Advances in Remote Sensing for Natural Resource Monitoring.
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Newark :
John Wiley & Sons, Incorporated,
2021.
|
Subjects: | |
Online Access: |
Full text (MFA users only) |
ISBN: | 9781119616023 1119616026 |
Local Note: | ProQuest Ebook Central |
Table of Contents:
- Cover
- Title Page
- Copyright
- Contents
- List of Abbreviations
- List of Contributors
- List of Editors
- Preface
- Section I General Section
- Chapter 1 Introduction to Natural Resource Monitoring Using Remote Sensing Technology
- 1.1 Introduction
- References
- Chapter 2 Spectroradiometry: Types, Data Collection, and Processing
- 2.1 Introduction
- 2.2 Literature Review
- 2.3 The Types of Spectroradiometry
- 2.3.1 Spectroradiometry
- 2.3.2 Photometry and Colorimetry
- 2.4 Principle of the Spectroradiometer
- 2.5 Radiance Measurement
- 2.5.1 Factors Affecting Spectral Reflectance Measurements
- 2.5.2 Data Processing
- 2.5.2.1 Radiometric Calibration
- 2.5.2.2 Reflectance/Transmittance
- 2.5.2.3 Radiance/Irradiance/Emissivity
- 2.5.2.4 1st Derivative
- 2.5.2.5 2nd Derivative
- 2.5.2.6 Parabolic Correction
- 2.5.2.7 Other Methods
- 2.6 Data Collection
- 2.7 Generation of the Metadata
- 2.7.1 Continuum Removal
- 2.8 Applications of ASD in Agriculture and Forestry
- 2.9 Future Importance, Limitations, and Recommendations
- Acknowledgment
- References
- Chapter 3 Geometric-Optical Modeling of Bidirectional Reflectance Distribution Function for Trees and Forest Stands
- 3.1 Introduction
- 3.2 Model Description
- 3.2.1 Sunlit Surfaces
- 3.2.2 Shaded Surfaces
- 3.2.3 Forest Stand Modeling
- 3.3 General Shape of the Apparent Luminance
- 3.4 Simulation and Discussion
- References
- Section II Vegetation Resource Monitoring (Forest and Agriculture)
- Chapter 4 Mapping Stand Age of Indonesian Rubber Plantation Using Fully Polarimetric L-Band Synthetic Aperture Radar
- 4.1 Introduction
- 4.2 Methodology
- 4.2.1 Test Site and Dataset
- 4.2.2 Processing
- 4.3 Results and Discussion
- 4.3.1 Scattering Behavior
- 4.3.2 Classification Using Backscatter Coefficients
- 4.3.3 Classification Using Model-Based Decomposition
- 4.3.4 The Role of Combining Datasets
- 4.3.5 The Best Subset
- 4.4 Conclusion
- Acknowledgments
- References
- Chapter 5 Responses of Multi-Frequency Remote Sensing to Forest Biomass
- 5.1 Background
- 5.1.1 Optical Remote Sensing
- 5.1.2 Microwave Remote Sensing
- 5.1.3 LiDAR Remote/Sensing
- 5.1.4 Synergic Use of Multi-Sensor Data
- 5.2 A Case Study in the Mixed Tropical Deciduous Forest of India
- 5.2.1 Study Area
- 5.2.2 Datasets
- 5.2.3 Methodology
- 5.2.4 Results
- 5.2.5 Conclusion
- 5.3 Uncertainties and Future Scope of Research in Biomass Estimation
- 5.3.1 Summary
- Acknowledgment
- References
- Chapter 6 Crop Water Requirements Analysis Using Geoinformatics Techniques in the Water-Scarce Semi-Arid Watershed
- 6.1 Introduction
- 6.1.1 Crop Calendar
- 6.1.2 Crop Type Classification
- 6.1.3 Crop Water Requirements
- 6.1.4 CROPWAT Model
- 6.1.5 Meteorological Data
- 6.2 Reference Evapotranspiration (ETo)
- 6.2.1 Effective Rainfall
- 6.2.2 Crop Coefficient (Kc)