Advances in Remote Sensing for Natural Resource Monitoring.

Saved in:
Bibliographic Details
Main Author: Pandey, Prem C.
Other Authors: Sharma, Laxmi K.
Format: Electronic eBook
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2021.
Subjects:
Online Access: Full text (MFA users only)
ISBN:9781119616023
1119616026
Local Note:ProQuest Ebook Central
Table of Contents:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Abbreviations
  • List of Contributors
  • List of Editors
  • Preface
  • Section I General Section
  • Chapter 1 Introduction to Natural Resource Monitoring Using Remote Sensing Technology
  • 1.1 Introduction
  • References
  • Chapter 2 Spectroradiometry: Types, Data Collection, and Processing
  • 2.1 Introduction
  • 2.2 Literature Review
  • 2.3 The Types of Spectroradiometry
  • 2.3.1 Spectroradiometry
  • 2.3.2 Photometry and Colorimetry
  • 2.4 Principle of the Spectroradiometer
  • 2.5 Radiance Measurement
  • 2.5.1 Factors Affecting Spectral Reflectance Measurements
  • 2.5.2 Data Processing
  • 2.5.2.1 Radiometric Calibration
  • 2.5.2.2 Reflectance/Transmittance
  • 2.5.2.3 Radiance/Irradiance/Emissivity
  • 2.5.2.4 1st Derivative
  • 2.5.2.5 2nd Derivative
  • 2.5.2.6 Parabolic Correction
  • 2.5.2.7 Other Methods
  • 2.6 Data Collection
  • 2.7 Generation of the Metadata
  • 2.7.1 Continuum Removal
  • 2.8 Applications of ASD in Agriculture and Forestry
  • 2.9 Future Importance, Limitations, and Recommendations
  • Acknowledgment
  • References
  • Chapter 3 Geometric-Optical Modeling of Bidirectional Reflectance Distribution Function for Trees and Forest Stands
  • 3.1 Introduction
  • 3.2 Model Description
  • 3.2.1 Sunlit Surfaces
  • 3.2.2 Shaded Surfaces
  • 3.2.3 Forest Stand Modeling
  • 3.3 General Shape of the Apparent Luminance
  • 3.4 Simulation and Discussion
  • References
  • Section II Vegetation Resource Monitoring (Forest and Agriculture)
  • Chapter 4 Mapping Stand Age of Indonesian Rubber Plantation Using Fully Polarimetric L-Band Synthetic Aperture Radar
  • 4.1 Introduction
  • 4.2 Methodology
  • 4.2.1 Test Site and Dataset
  • 4.2.2 Processing
  • 4.3 Results and Discussion
  • 4.3.1 Scattering Behavior
  • 4.3.2 Classification Using Backscatter Coefficients
  • 4.3.3 Classification Using Model-Based Decomposition
  • 4.3.4 The Role of Combining Datasets
  • 4.3.5 The Best Subset
  • 4.4 Conclusion
  • Acknowledgments
  • References
  • Chapter 5 Responses of Multi-Frequency Remote Sensing to Forest Biomass
  • 5.1 Background
  • 5.1.1 Optical Remote Sensing
  • 5.1.2 Microwave Remote Sensing
  • 5.1.3 LiDAR Remote/Sensing
  • 5.1.4 Synergic Use of Multi-Sensor Data
  • 5.2 A Case Study in the Mixed Tropical Deciduous Forest of India
  • 5.2.1 Study Area
  • 5.2.2 Datasets
  • 5.2.3 Methodology
  • 5.2.4 Results
  • 5.2.5 Conclusion
  • 5.3 Uncertainties and Future Scope of Research in Biomass Estimation
  • 5.3.1 Summary
  • Acknowledgment
  • References
  • Chapter 6 Crop Water Requirements Analysis Using Geoinformatics Techniques in the Water-Scarce Semi-Arid Watershed
  • 6.1 Introduction
  • 6.1.1 Crop Calendar
  • 6.1.2 Crop Type Classification
  • 6.1.3 Crop Water Requirements
  • 6.1.4 CROPWAT Model
  • 6.1.5 Meteorological Data
  • 6.2 Reference Evapotranspiration (ETo)
  • 6.2.1 Effective Rainfall
  • 6.2.2 Crop Coefficient (Kc)