Search Results - "algorithms"

Refine Results
  1. 3101

    Machine learning for protein subcellular localization prediction by Wan, Shibiao, Mak, M. W.

    Published 2015
    Table of Contents: “…-- 3.4 More reasons for using GO information -- 4 Single-location protein subcellular localization -- 4.1 Extracting GO from the Gene Ontology Annotation Database -- 4.1.1 Gene Ontology Annotation Database -- 4.1.2 Retrieval of GO terms -- 4.1.3 Construction of GO vectors -- 4.1.4 Multiclass SVM classification -- 4.2 FusionSVM: Fusion of gene ontology and homology-based features -- 4.2.1 InterProGOSVM: Extracting GO from InterProScan -- 4.2.2 PairProSVM: A homology-based method -- 4.2.3 Fusion of InterProGOSVM and PairProSVM -- 4.3 Summary -- 5 From single- to multi-location -- 5.1 Significance of multi-location proteins -- 5.2 Multi-label classification -- 5.2.1 Algorithm-adaptation methods.…”
    Full text (MFA users only)
    Electronic eBook
  2. 3102

    Fog and fogonomics : challenges and practices of fog computing, communication, networking, strategy, and economics

    Published 2020
    Table of Contents: “…3.3.1.2 Computation Task Models 68 -- 3.3.1.3 Quality of Experience 71 -- 3.3.2 Computation Offloading Game 71 -- 3.3.2.1 Game Formulation 71 -- 3.3.2.2 Algorithm Development 74 -- 3.3.2.3 Price of Anarchy 74 -- 3.3.2.4 Performance Evaluation 75 -- 3.4 Conclusion 80 -- References 80 -- 4 Pricing Tradeoffs for Data Analytics in Fog-Cloud Scenarios 83 /Yichen Ruan, Liang Zheng, Maria Gorlatova, Mung Chiang, and Carlee Joe-Wong -- 4.1 Introduction: Economics and Fog Computing 83 -- 4.1.1 Fog Application Pricing 85 -- 4.1.2 Incentivizing Fog Resources 86 -- 4.1.3 A Fogonomics Research Agenda 86 -- 4.2 Fog Pricing Today 87 -- 4.2.1 Pricing Network Resources 87 -- 4.2.2 Pricing Computing Resources 89 -- 4.2.3 Pricing and Architecture Trade-offs 89 -- 4.3 Typical Fog Architectures 90 -- 4.3.1 Fog Applications 90 -- 4.3.2 The Cloud-to-Things Continuum 90 -- 4.4 A Case Study: Distributed Data Processing 92 -- 4.4.1 A Temperature Sensor Testbed 92 -- 4.4.2 Latency, Cost, and Risk 95 -- 4.4.3 System Trade-off: Fog or Cloud 98 -- 4.5 Future Research Directions 101 -- 4.6 Conclusion 102 -- Acknowledgments 102 -- References 103 -- 5 Quantitative and Qualitative Economic Benefits of Fog 107 /Joe Weinman -- 5.1 Characteristics of Fog Computing Solutions 108 -- 5.2 Strategic Value 109 -- 5.2.1 Information Excellence 110 -- 5.2.2 Solution Leadership 110 -- 5.2.3 Collective Intimacy 110 -- 5.2.4 Accelerated Innovation 111 -- 5.3 Bandwidth, Latency, and Response Time 111 -- 5.3.1 Network Latency 113 -- 5.3.2 Server Latency 114 -- 5.3.3 Balancing Consolidation and Dispersion to Minimize Total Latency 114 -- 5.3.4 Data Traffic Volume 115 -- 5.3.5 Nodes and Interconnections 116 -- 5.4 Capacity, Utilization, Cost, and Resource Allocation 117 -- 5.4.1 Capacity Requirements 117 -- 5.4.2 Capacity Utilization 118 -- 5.4.3 Unit Cost of Delivered Resources 119 -- 5.4.4 Resource Allocation, Sharing, and Scheduling 120 -- 5.5 Information Value and Service Quality 120 -- 5.5.1 Precision and Accuracy 120.…”
    Full text (MFA users only)
    Electronic eBook
  3. 3103

    Ecological modelling for sustainable development

    Published 2013
    Table of Contents: “…. -- Effects of Endozoochorous Seed Dispersal on the Soil Seed Bank and Vegetation in the Woodland Area of the Wolfhezerheide-Saragih Evi,Bokdam Jan and Braakhekke Wim -- The State of the Environment, Biodiversity and Fisheries in the Southern Caspian Sea-Hassan Ghadirnejad and Siti Azizah Mohd Nor -- SECTION 2: ORAL PRESENTATION VI: Water Quality and Pollutant Removal/Treatment -- TSS Measurements in the Straits of Penang, Malaysia, using Multispectral Algorithm-Sami Gumaan Daraigan, Mohd Zubir Mat Jafri, Khiruddin Abdullah, Lim Hwee San, A.N. …”
    Full text (MFA users only)
    Electronic eBook
  4. 3104

    Penetration testing : a hands-on introduction to hacking by Weidman, Georgia

    Published 2014
    Table of Contents: “…Online Password Attacks / Peter Van Eeckhoutte -- Wordlists / Peter Van Eeckhoutte -- Guessing Usernames and Passwords with Hydra / Peter Van Eeckhoutte -- Offline Password Attacks / Peter Van Eeckhoutte -- Recovering Password Hashes from a Windows SAM File / Peter Van Eeckhoutte -- Dumping Password Hashes with Physical Access / Peter Van Eeckhoutte -- LM vs. NTLM Hashing Algorithms / Peter Van Eeckhoutte -- The Trouble with LM Password Hashes / Peter Van Eeckhoutte -- John the Ripper / Peter Van Eeckhoutte -- Cracking Linux Passwords / Peter Van Eeckhoutte -- Cracking Configuration File Passwords / Peter Van Eeckhoutte -- Rainbow Tables / Peter Van Eeckhoutte -- Online Password-Cracking Services / Peter Van Eeckhoutte -- Dumping Plaintext Passwords from Memory with Windows Credential Editor / Peter Van Eeckhoutte -- Summary / Peter Van Eeckhoutte -- 10. …”
    Full text (MFA users only)
    Electronic eBook
  5. 3105

    Public safety networks from LTE to 5G by Yarali, Abdulrahman

    Published 2020
    Table of Contents: “…6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications -- Europe (PSCE) 121.…”
    Full text (MFA users only)
    Electronic eBook
  6. 3106

    Analyzing neural time series data : theory and practice by Cohen, Mike X., 1979-

    Published 2014
    Table of Contents: “…What Is the Surface Laplacian? -- 22.2. Algorithms for Computing the Surface Laplacian for EEG Data -- 22.3. …”
    Full text (MFA users only)
    Electronic eBook
  7. 3107

    Visual Inspection Technology in the Hard Disc Drive Industry. by Muneesawang, Paisarn

    Published 2015
    Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  8. 3108

    Unmanned aircraft systems

    Published 2016
    Table of Contents: “…1.1 Autonomy Levels for UAS -- 1.2 Overview of Architectures for Autonomous Systems -- 2 Autonomy Architecture for UAS -- 2.1 Low-Level Architecture -- 2.2 High-Level Architecture -- 3 Example of Autonomy Architecture: The ARCAS Project -- 3.1 Low-Level ARCAS Architecture -- 3.2 High-Level ARCAS Architecture -- 3.3 Example of ARCAS Complex Mission: Assembly Operations -- 4 Conclusions -- References -- Chapter 17: Obstacle Avoidance: Static Obstacles -- 1 Introduction -- 2 Avoiding Static Obstacles -- 2.1 Voronoi Diagram -- 2.2 Cell Decomposition -- 2.3 Visibility Graph -- 2.4 Potential Field and Sampling-Based Methods -- 3 Research on Obstacle Avoidance -- 4 Avoidance of Static Obstacles -- 5 Reactive Planning -- 6 Summary -- References -- Chapter 18: Guided Weapon and UAV Navigation and Path-Planning -- 1 Problems of GPS and INS for Missiles and UAVs -- 1.1 Global Positioning System (GPS) Navigation -- 1.2 Inertial Navigation System (INS) -- 1.3 Inertial Navigation Algorithm -- 1.4 GPS/INS Integration -- 2 Principles and Practice of TERPROM and TERCOM -- 2.1 Aircraft and UAV Path Planning -- 3 Tactical Missile Guidance Strategies -- 3.1 CLOS Guidance and Variations -- 3.2 Proportional Navigation (PN) Guidance -- 3.3 Miss Distance (MD) -- 4 Conclusions -- Notation -- Nomenclature -- References -- Chapter 19: Embedded UAS Autopilot and Sensor Systems -- 1 Introduction -- 2 Autopilot Architecture -- 3 Inner-Loop Control Structure -- 3.1 Lateral Autopilot -- 3.2 Longitudinal Autopilot -- 4 On-Board Sensors and Sensor Processing -- 4.1 Angular Rates, Airspeed, and Altitude -- 4.2 Roll and Pitch Angles -- 4.3 Inertial Position and Heading -- 5 GPS Navigation -- 5.1 Straight-Line Path Following -- 5.2 Orbit Following -- 6 Summary -- Acknowledgments -- End Notes -- References -- Part 6: Control.…”
    Full text (MFA users only)
    Electronic eBook
  9. 3109

    Fundamentals of Fluid Power Control. by Watton, John

    Published 2009
    Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
    Full text (MFA users only)
    Electronic eBook
  10. 3110

    Spread spectrum systems for GNSS and wireless communications by Holmes, Jack K. (Jack Kenneth), 1936-

    Published 2007
    Table of Contents: “…4.3.1 Convolutional Code Encoder Characterization -- 4.3.2 The Transfer Function of a Convolutional Code and the Free Distance -- 4.3.3 Decoding of Convolutional Codes -- 4.3.4 The Viterbi Algorithm -- 4.3.5 Error Probabilities for Viterbi Decoding of Convolutional Codes -- 4.3.6 Sequential Decoding of Convolutional Codes -- 4.3.7 Threshold Decoding of Convolutional Codes -- 4.3.8 Nonbinary Convolutional Codes -- 4.4 ITERATIVELY DECODED CODES -- 4.4.1 Turbo Codes -- 4.4.2 A Serial Concatenated Convolutional Code -- 4.4.3 Serial Concatenated Block Codes -- 4.4.4 Parallel Concatenated Block Codes -- 4.4.5 Low-Density Parity Check Codes -- 4.5 SELECTED RESULTS FOR SOME ERROR CORRECTION CODES -- 4.5.1 Bose, Chaudhuri, and Hocquenghem Codes -- 4.5.2 Reed-Solomon Codes -- 4.5.3 Convolutional Codes with Maximum Free Distance -- 4.5.4 Hard- and Soft-Decision FFH/MFSK with Repeat Coding BER Performance -- 4.6 SHANNON'S CAPACITY THEOREM, THE CHANNEL CODING THEOREM, AND BANDWIDTH EFFICIENCY -- 4.6.1 Shannon's Capacity Theorem -- 4.6.2 Channel Coding Theorem -- 4.6.3 Bandwidth Efficiency -- 4.7 APPLICATIONS OF ERROR CONTROL CODING -- 4.8 SUMMARY -- References -- Selected Bibliography -- Problems -- CHAPTER 5 Carrier Tracking Loops and Frequency Synthesizers -- 5.0 INTRODUCTION -- 5.1 TRACKING OF RESIDUAL CARRIER SIGNALS -- 5.2 PLL FOR TRACKING A RESIDUAL CARRIER COMPONENT -- 5.2.1 The Likelihood Function for Phase Estimation -- 5.2.2 The Maximum-Likelihood Estimation of Carrier Phase -- 5.2.3 Long Loops and Short Loops -- 5.2.4 The Stochastic Differential Equation of Operation -- 5.2.5 The Linear Model of the PLL with Noise -- 5.2.6 The Various Loop Filter Types -- 5.2.7 Transient Response of a Second-Order Loop -- 5.2.8 Steady State Tracking Error When the Phase Error Is Small -- 5.2.9 The Variance of the Linearized PLL Phase Error Due to Thermal Noise.…”
    Full text (MFA users only)
    Electronic eBook
  11. 3111
  12. 3112

    XML for DB2 information integration

    Published 2004
    Table of Contents: “…-- 3.4 Creating an XML schema from a database schema -- 3.4.1 The algorithm.…”
    Full text (MFA users only)
    Electronic eBook
  13. 3113

    Industrial automation technologies by Dey, Chanchal, Sen, Sunit Kumar

    Published 2020
    Table of Contents: “…Digital PID Control Algorithm -- Positional and Velocity Forms -- 3.3.4. …”
    Full text (MFA users only)
    Electronic eBook
  14. 3114

    IBM TotalStorage : SAN product, design, and optimization guide

    Published 2005
    Table of Contents: “…-- 3.7.8 FC-PH-2 and speed -- 3.7.9 1, 2 and 4 Gbps and beyond -- 3.7.10 FC-PH, FC-PH-2, and FC-PH-3 -- 3.7.11 Layers -- 3.8 Zoning -- 3.8.1 Hardware zoning -- 3.8.2 Software zoning -- 3.9 Trunking -- 3.9.1 Frame filtering -- 3.9.2 Oversubscription -- 3.9.3 Congestion -- 3.9.4 Information units -- 3.9.5 The movement of data -- 3.9.6 Data encoding -- 3.10 Ordered set, frames, sequences, and exchanges -- 3.10.1 Ordered set -- 3.10.2 Frames -- 3.10.3 Sequences -- 3.10.4 Exchanges -- 3.10.5 Frames -- 3.10.6 In order and out of order -- 3.10.7 Latency -- 3.10.8 Heterogeneousness -- 3.10.9 Open Fiber Control -- 3.11 Fibre Channel Arbitrated Loop (FC-AL) -- 3.11.1 Loop protocols -- 3.11.2 Fairness algorithm -- 3.11.3 Loop addressing -- 3.11.4 Private devices on NL_Ports -- 3.12 Factors and considerations -- 3.12.1 Limits -- 3.12.2 Security -- 3.12.3 Interoperability -- 3.13 Standards -- 3.14 SAN industry associations and organizations -- 3.14.1 Storage Networking Industry Association -- 3.14.2 Fibre Channel Industry Association -- 3.14.3 SCSI Trade Association -- 3.14.4 International Committee for Information Technology Standards -- 3.14.5 INCITS technical committee T11.…”
    Full text (MFA users only)
    Electronic eBook
  15. 3115

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook
  16. 3116
  17. 3117

    Evolutionary Robust Control. by Feyel, Philippe

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  18. 3118
  19. 3119
  20. 3120

    Imaging by numbers : a historical view of the computer print

    Published 2008
    Book