Search Results - ("algorithm" OR "algorithms")

Refine Results
  1. 2861

    The smart city in a digital world by Mosco, Vincent

    Published 2019
    Full text (MFA users only)
    Electronic eBook
  2. 2862

    DeFi and the Future of Finance. by Harvey, Campbell R.

    Published 2021
    Full text (MFA users only)
    Electronic eBook
  3. 2863
  4. 2864

    Designing stock market trading systems : with and without soft computing by Vanstone, Bruce

    Published 2010
    Table of Contents: “…5.1 Introduction5.1.1 Types of soft computing -- 5.1.2 Expert systems -- 5.1.3 Case-based reasoning -- 5.1.4 Genetic algorithms -- 5.1.5 Swarm intelligence -- 5.1.6 Artificial neural networks -- 5.2 Review of research -- 5.2.1 Soft computing classifications -- 5.2.2 Research into time series prediction -- 5.2.3 Research into pattern recognition and classification -- 5.2.4 Research into optimisation -- 5.2.5 Research into ensemble approaches -- 5.3 Conclusion -- 5.4 The next step -- Chapter 6: Creating Artificial Neural Networks -- 6.1 Introduction…”
    Full text (MFA users only)
    Electronic eBook
  5. 2865

    Techniques for Noise Robustness in Automatic Speech Recognition. by Virtanen, Tuomas

    Published 2012
    Table of Contents: “…9.1.3 Gaussian Mixture Models 231 -- 9.2 MMSE-SPLICE 232 -- 9.2.1 Parameter Estimation 233 -- 9.2.2 Results 236 -- 9.3 Discriminative SPLICE 237 -- 9.3.1 The MMI Objective Function 238 -- 9.3.2 Training the Front-End Parameters 239 -- 9.3.3 The Rprop Algorithm 240 -- 9.3.4 Results 241 -- 9.4 Model-Based Feature Enhancement 242 -- 9.4.1 The Additive Noise-Mixing Equation 243 -- 9.4.2 The Joint Probability Model 244 -- 9.4.3 Vector Taylor Series Approximation 246 -- 9.4.4 Estimating Clean Speech 247 -- 9.4.5 Results 247 -- 9.5 Switching Linear Dynamic System 248 -- 9.6 Conclusion 249 -- References 249 -- 10 Reverberant Speech Recognition 251 / Reinhold Haeb-Umbach, Alexander Krueger -- 10.1 Introduction 251 -- 10.2 The Effect of Reverberation 252 -- 10.2.1 What is Reverberation? …”
    Full text (MFA users only)
    Electronic eBook
  6. 2866

    Modulares Multisensorielles Indoor Navigationssystem. by Ascher, Christian

    Published 2014
    Table of Contents: “…6.6.1 Literatur6.6.2 UWB Funksystem; 6.6.3 Tightly Coupled UWB/INS Navigationsfilter; 6.6.4 Szenarien mit Ergebnissen; 6.6.5 Fazit; 7 Laser OrthoSLAM; 7.1 SLAM-Methoden; 7.2 Laserentfernungsmesser; 7.3 Linienextraktion; 7.3.1 Incremental Line Extraction; 7.3.2 Split-And-Merge Algorithmen; 7.3.3 Adaptive Line Extraction Algorithm; 7.4 Datenassoziation; 7.4.1 Datenassoziation Nearest-Neighbour; 7.4.2 Datenassoziation: Maximum-Likelihood; 7.4.3 Joint Compatibilty Branch and Bound; 7.5 SLAM-Verfahren; 7.5.1 EKF-SLAM; 7.5.2 FastSLAM; 7.5.3 Thin Junction Tree Filters.…”
    Full text (MFA users only)
    Electronic eBook
  7. 2867

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…3.10.4 A Linguistic Variable -- IF-THEN Rules -- IF X is High, Then Y is High -- 3.10.5 Membership Functions -- 3.10.6 Strategy of Fuzzy Logic Systems -- 3.10.7 Summary -- References -- 4: Support Vector Machine -- 4.1 Introduction to Statistical Learning Theory -- 4.2 Support Vector Classification -- 4.2.1 Hard Margin SVM -- 4.2.2 Soft Margin SVM -- 4.2.3 Mapping to High-Dimensional Space -- 4.2.3.1 Kernel Tricks -- 4.2.3.2 Normalizing Kernels -- 4.2.4 Properties of Mapping Functions Associated with Kernels -- 4.2.5 Summary -- 4.3 Multi-Class SVM -- 4.3.1 Introduction -- 4.3.2 Conventional SVM -- 4.3.3 Decision Tree-Based SVM -- 4.3.4 Pairwise SVM -- 4.3.5 Summary -- 4.4 Various SVMs -- 4.4.1 Introduction -- 4.4.2 Least Square SVM -- 4.4.3 Linear Programming SVM -- 4.4.4 Sparse SVM -- 4.4.5 Robust SVM -- 4.4.6 Bayesian SVM -- 4.4.7 Summary -- 4.5 Kernel-Based Methods -- 4.5.1 Introduction -- 4.5.2 Kernel Least Squares -- 4.5.3 Kernel Principal Component Analysis -- 4.5.4 Kernel Discriminate Analysis -- 4.5.5 Summary -- 4.6 Feature Selection and Extraction -- 4.6.1 Introduction -- 4.6.2 Initial Set of Features -- 4.6.3 Procedure for Feature Selection -- 4.6.4 Feature Extraction -- 4.6.5 Clustering -- 4.6.6 Summary -- 4.7 Function Approximation -- 4.7.1 Introduction -- 4.7.2 Optimal Hyperplanes -- 4.7.3 Margin Support Vector Regression -- 4.7.4 Model Selection -- 4.7.5 Training Methods -- 4.7.6 Variants of SVR -- 4.7.7 Variable Selections -- 4.7.8 Summary -- References -- 5: Genetic Algorithm (GA) -- 5.1 Introduction -- 5.1.1 Basic Operators and Terminologies in GA -- Key Elements -- Breeding (Crossover) -- Selection -- Crossover (Recombination) -- 5.1.2 Traditional Algorithm and GA -- 5.1.3 General GA -- 5.1.4 The Schema Theorem -- Theorem: Schema Theorem (Holland) -- 5.1.5 Optimal Allocation of Trails -- 5.1.6 Summary -- 5.2 Classification of GA.…”
    Full text (MFA users only)
    Electronic eBook
  8. 2868

    Introduction to EEG- and speech-based emotion recognition by Abhang, Priyanka A., Gawali, Bharti W., Mehrotra, Suresh C.

    Published 2016
    Table of Contents: “…3.1 INTRODUCTION TO BRAIN-WAVE FREQUENCIES -- 3.1.1 Gamma Waves -- 3.1.2 Beta Waves -- 3.1.3 Alpha Waves -- 3.1.4 Theta Waves -- 3.1.5 Delta Waves -- 3.2 SPEECH PROSODIC FEATURES -- 3.2.1 Acoustic Features for Emotions -- 3.2.1.1 Prosody-Related Signal Measures -- 3.2.1.1.1 ENERGY -- 3.2.1.1.2 PITCH -- 3.2.1.1.3 FORMANT -- 3.2.1.1.4 INTENSITY -- 3.2.1.1.5 LOUDNESS -- 3.2.1.1.6 DURATION -- 3.2.1.1.7 SAMPLING RATE -- 3.2.1.2 Spectral Characteristics Measures -- 3.2.1.2.1 MEL-FREQUENCY CEPSTRAL COEFFICIENTS -- 3.2.1.2.2 MEL FILTER BANK ENERGY BASED SLOPE FEATURES -- 3.2.1.3 Voice Quality-related Measures -- 3.2.1.3.1 JITTER -- 3.2.1.3.2 SHIMMER -- 3.2.1.3.3 HARMONIC TO NOISE RATIO -- 3.3 SIGNAL PROCESSING ALGORITHMS -- 3.3.1 Preprocessing Algorithms -- 3.3.1.1 Common Spatial Patterns (CSP) -- 3.3.1.2 Independent Component Analysis -- 3.3.2 Feature Extraction -- 3.3.2.1 Principal Components Analysis -- 3.3.2.2 Mel Frequency Cepstral Coefficients for Speech Feature Extraction -- 3.3.3 Feature Classification -- 3.3.3.1 Linear Discriminative Analysis -- 3.3.3.2 Support Vector Machine -- 3.3.3.2.1 LINEAR CLASSIFICATION -- 3.3.3.2.2 NON-LINEAR CLASSIFICATION -- 3.4 CONCLUSION -- References -- 4 -- Time and Frequency Analysis -- 4.1 INTRODUCTION -- 4.2 FOURIER TRANSFORMATION -- 4.2.1 Theoretical Background -- 4.2.2 Aliasing -- 4.3 GABOR TRANSFORMATION (SHORT-TIME FOURIER TRANSFORMATION)5-7 -- 4.3.1 Theoretical Considerations -- 4.3.2 Limitations of Gabor Transformation5,6,9 -- 4.4 SHORT-TIME FOURIER TRANSFORMATION -- 4.4.1 Window Size for Short-Term Spectral Analysis10,11 -- 4.5 WAVELET TRANSFORMATION -- 4.5.1 Theoretical Background -- 4.5.1.1 Continuous Wavelet Transformation -- 4.5.1.2 Dyadic Wavelet Transformation -- 4.5.1.3 Multiresolution Analysis -- 4.5.1.4 Discrete Wavelet (Haar) Transformation -- 4.5.1.5 The Morlet Wavelet.…”
    Full text (MFA users only)
    Electronic eBook
  9. 2869

    Advances in data science : symbolic, complex, and network data

    Published 2020
    Table of Contents: “…Online decomposition of covariance matrix 125 -- 6.3.3. Adopted algorithms 128 -- 6.4. Simulation studies 131 -- 6.4.1. …”
    Full text (MFA users only)
    Electronic eBook
  10. 2870

    Learning Python Design Patterns - Second Edition. by Giridhar, Chetan

    Published 2016
    Table of Contents: “…Façade -- System -- Client -- Implementing the Façade pattern in the real world -- The principle of least knowledge -- Frequently asked questions -- Summary -- Chapter 5: The Proxy Pattern -- Controlling Object Access -- Understanding the Proxy design pattern -- A UML class diagram for the Proxy pattern -- Understanding different types of Proxies -- A virtual proxy -- A remote proxy -- A protective proxy -- A smart proxy -- The Proxy pattern in the real world -- Advantages of the Proxy pattern -- Comparing the Façade and Proxy patterns -- Frequently asked questions -- Summary -- Chapter 6: The Observer Pattern -- Keeping Objects in the Know -- Introducing Behavioral patterns -- Understanding the Observer design pattern -- A UML class diagram for the Observer pattern -- The Observer pattern in the real world -- The Observer pattern methods -- The pull model -- The push model -- Loose coupling and the Observer pattern -- The Observer pattern -- advantages and disadvantages -- Frequently asked questions -- Summary -- Chapter 7: The Command Pattern -- Encapsulating Invocation -- Introducing the Command pattern -- Understanding the Command design pattern -- A UML class diagram for the Command pattern -- Implementing the Command pattern in the real world -- Design considerations -- Advantages and disadvantages of Command patterns -- Frequently asked questions -- Summary -- Chapter 8: The Template Method Pattern -- Encapsulating Algorithm -- Defining the Template Method pattern -- Understanding the Template Method design pattern -- A UML class diagram for the Template Method pattern -- The Template Method pattern in the real world -- The Template Method pattern -- hooks -- The Hollywood principle and the Template Method -- The advantages and disadvantages of the Template Method pattern -- Frequently asked questions -- Summary.…”
    Full text (MFA users only)
    Electronic eBook
  11. 2871

    Computational models of argument : Proceedings of COMMA 2012

    Published 2012
    Table of Contents: “…Simari -- Automated Deployment of Argumentation Protocols / Michael Rovatsos -- On Preferred Extension Enumeration in Abstract Argumentation / Katie Atkinson -- Towards Experimental Algorithms for Abstract Argumentation / Katie Atkinson.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  12. 2872

    Mobile phones : technology, networks, and user issues

    Published 2011
    Table of Contents: “…Seamless Sensor Fusion -- 4.1. Particle Filter Algorithm -- 4.2. Motion Model -- 4.3. Measurement Model -- 4.4. …”
    Full text (MFA users only)
    Electronic eBook
  13. 2873

    Introduction to Bayesian estimation and copula models of dependence by Shemyakin, Arkady

    Published 2017
    Table of Contents: “…4 Markov Chain Monte Carlo Methods4.1 Markov Chain Simulations for Sun City and Ten Coins; 4.2 Metropolis-Hastings Algorithm; 4.3 Random Walk MHA; 4.4 Gibbs Sampling; 4.5 Diagnostics of MCMC; 4.5.1 Monitoring Bias and Variance of MCMC; 4.5.2 Burn-in and Skip Intervals; 4.5.3 Diagnostics of MCMC; 4.6 Suppressing Bias and Variance; 4.6.1 Perfect Sampling; 4.6.2 Adaptive MHA; 4.6.3 ABC and Other Methods; 4.7 Time-to-Default Analysis of Mortgage Portfolios; 4.7.1 Mortgage Defaults; 4.7.2 Customer Retention and Infinite Mixture Models; 4.7.3 Latent Classes and Finite Mixture Models.…”
    Full text (MFA users only)
    Electronic eBook
  14. 2874

    Electromagnetic nondestructive evaluation (XII)

    Published 2009
    Table of Contents: “…Elastic Properties of Thermally Aged Fe-Cu Model Alloys Measured by EMAR Method -- Nondestructive Evaluation of Ferromagnetic Structural Materials Using FG Sensor -- Inverse Problem and Imaging -- Standoff Detection and Imaging of Suspicious and Concealed Objects with Electromagnetic Waves in the Centimetre and Millimetre Range -- Pulsed Terahertz Imaging for Nondestructive Evaluation -- On the Imaging of Two-Dimensional Thin Inclusions by a MUSIC-Type Algorithm from Boundary Measurements -- Chance-Constrained Programming: A Tool for Solving Linear Eddy Current Inverse Problem -- A Multiple Frequency Strategy for Reconstruction of Stress Corrosion Crack from ECT Signals -- Estimation Theory Metrics in Electromagnetic NDE -- Three Dimensional Shape Recovery of Fatigue Crack Using Eddy Current Testing Signals -- Application of Electromagnetic Nondestructive Techniques -- Development of Strong Magnetizer and Robust Sensor Mount System to Increase Performance in Detecting Defects on Pipeline -- Electromagnetic Evaluation of Honeycomb Composite Materials -- An Electromagnetic Method for Evaluation of Fatigue and for Detection of Damage at Bjork-Shiley Convexo-Concave Prosthetic Heart Valves -- Electromagnetic Evaluation of Soil Condition -- Investigation of Cu-Pc Thin Films on ITO Substrate by Using a Near-Field Microwave Microprobe -- Noncontact Characterization of Electric Carriers Density at Heterojunction Interfaces -- Electromagnetic Field Interaction with Aqueous Glucose Solution in Dielectric Resonator -- Quantitative Evaluation of Corrosion Shape on Back Surface of SUS Samples by EMAT -- Inspection of 3D Flaws Using EMAT -- Nondestructive Evaluation of Beryllium to Copper Joining for ITER by Using an Electromagnetic Acoustic Transducer (EMAT) -- Subject Index -- Author Index.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  15. 2875

    Fundamentals of patenting and licensing for scientists and engineers by Ma, Matthew Y.

    Published 2009
    Table of Contents: “…Patenting beyond core algorithms. 5.4. Innovation harvesting. 5.5. Patent landscaping. 5.6. …”
    Full text (MFA users only)
    Electronic eBook
  16. 2876

    Steps towards a unified basis for scientific models and methods by Helland, Inge S.

    Published 2010
    Table of Contents: “…The partial least squares data algorithms. 8.3. The partial least squares population model. 8.4. …”
    Full text (MFA users only)
    Electronic eBook
  17. 2877

    A Systems Approach to Lithium-Ion Battery Management. by Weicker, Phil

    Published 2013
    Table of Contents: “…16.4.2 Active Methods -- 16.5 Capacity Estimation -- 16.6 Self-Discharge Detection -- 16.7 Parameter Estimation -- 16.8 Dual-Loop System -- 16.9 Remaining Useful Life Estimation -- 16.10 Particle Filters -- Reference -- 17 Fault Detection -- 17.1 Overview -- 17.2 Failure Detection -- 17.2.1 Overcharge/Overvoltage -- 17.2.2 Over-Temperature -- 17.2.3 Overcurrent -- 17.2.4 Battery Imbalance/Excessive Self- -- 17.2.5 Internal Short Circuit Detection -- 17.2.6 Detection of Lithium Plating -- 17.2.7 Venting Detection -- 17.2.8 Excessive Capacity Loss -- 17.3 Reaction Strategies -- References -- 18 Hardware Implementation -- 18.1 Packaging and Product Development -- 18.2 Battery Management System IC Select -- 18.3 Component Selection -- 18.3.1 Microprocessor -- 18.3.2 Other Components -- 18.4 Circuit Design -- 18.5 Layout -- 18.6 EMC -- 18.7 Power Supply Architectures -- 18.8 Manufacturing -- 19 Software Implementation -- 19.1 Safety-Critical Software -- 19.2 Design Goals -- 19.3 Analysis of Safety-Critical Softwar -- 19.4 Validation and Coverage -- 19.5 Model Implementation -- 19.6 Balancing -- 19.7 Temperature Impact on State of Char -- 20 Safety -- 20.1 Functional Safety -- 20.2 Hazard Analysis -- 20.3 Safety Goals -- 20.4 Safety Concepts and Strategies -- 20.5 Reference Design for Safety -- 21 Data Collection -- 21.1 Lifetime Data Gathering -- 22 Robustness and Reliability -- 22.1 Failure Mode Analysis -- 22.2 Environmental Durability -- 22.3 Abuse Conditions -- 22.4 Reliability Engineering -- 23 Best Practice -- 23.1 Engineering System Development -- 23.2 Industry Standards -- 23.3 Quality -- 24 Future Developments -- 24.1 Subcell Modeling -- 24.2 Adaptive Algorithms -- 24.3 Advanced Safety -- 24.4 System Integration -- Endnotes -- About the Author -- Index.…”
    Full text (MFA users only)
    Electronic eBook
  18. 2878
  19. 2879
  20. 2880