Search Results - (((((((ant OR alter) OR wint) OR kantor) OR cantor) OR anne) OR salted) OR granting) algorithms.

  1. 161
  2. 162

    Power and energy systems III : selected, peer reviewed papers from the 2013 3rd International Conference on Power and Energy Systems (ICPES 2013), November 23-24, Bangkok, Thailand

    Published 2014
    Table of Contents: “…Appropriate Electric Energy Conservation Measures for Big Mosques in Riyadh CityBayesian Algorithm Based on Airborne Power Supply System; Study on the Cooling System of Super-Capacitors for Hybrid Electric Vehicle; A Charging Management of Electric Vehicles Based on Campus Survey Data; Back-EMF Position Detection Technology for Brushless DC Motor; Stress State of Turbine Blade Root and Rim Considering Manufacturing Variations; Analysis on a Gas Turbine Sealing Disk Structure and Material Strength; A Kind of Adjustable Electric Heating Pipe Power Electrode Preparation Equipment.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  3. 163

    Epistemological Foundations of Mathematical Experience

    Published 1991
    Full text (MFA users only)
    Electronic eBook
  4. 164

    Mathematical Methods in Interdisciplinary Sciences. by Chakraverty, Snehashish

    Published 2020
    Table of Contents: “…1.2.2.1 Architecture of Single-Layer LgNN Model -- 1.2.2.2 Training Algorithm of Laguerre Neural Network (LgNN) -- 1.2.2.3 Gradient Computation of LgNN -- 1.3 Methodology for Solving a System of Fredholm Integral Equations of Second Kind -- 1.3.1 Algorithm -- 1.4 Numerical Examples and Discussion -- 1.4.1 Differential Equations and Applications -- 1.4.2 Integral Equations -- 1.5 Conclusion -- References -- Chapter 2 Deep Learning in Population Genetics: Prediction and Explanation of Selection of a Population -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Dataset Description…”
    Full text (MFA users only)
    Electronic eBook
  5. 165
  6. 166

    Negative binomial regression by Hilbe, Joseph M., 1944-

    Published 2011
    Full text (MFA users only)
    Electronic eBook
  7. 167
  8. 168

    Biological computation by Lamm, Ehud

    Published 2011
    Full text (MFA users only)
    Electronic eBook
  9. 169

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
    Full text (MFA users only)
    Electronic eBook
  10. 170
  11. 171

    Lung cancer and imaging

    Published 2020
    Full text (MFA users only)
    Electronic eBook
  12. 172
  13. 173

    Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications

    Published 2012
    Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
    Full text (MFA users only)
    Electronic eBook
  14. 174

    Pediatric incontinence : evaluation and clinical management

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  15. 175

    Knowledge mining using intelligent agents

    Published 2011
    Full text (MFA users only)
    Electronic eBook
  16. 176
  17. 177

    Digitalization of Society and Socio-Political Issues. 1, Digital, Communication, and Culture

    Published 2019
    Table of Contents: “…The Digitalization of Cultural Policies in France 149; Anne BELLON 14.1.…”
    Full text (MFA users only)
    Electronic eBook
  18. 178
  19. 179
  20. 180

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook