Search Results - (((((((ant OR arts) OR vikan) OR data) OR cantor) OR anne) OR walted) OR wanting) algorithms.

  1. 141

    Data Mining : a Tutorial-Based Primer, Second Edition. by Roiger, Richard J.

    Published 2017
    Table of Contents: “…3.2 A BASIC COVERING RULE ALGORITHM3.3 GENERATING ASSOCIATION RULES; 3.3.1 Confidence and Support; 3.3.2 Mining Association Rules: An Example; 3.3.3 General Considerations; 3.4 THE K-MEANS ALGORITHM; 3.4.1 An Example Using K-means; 3.4.2 General Considerations; 3.5 GENETIC LEARNING; 3.5.1 Genetic Algorithms and Supervised Learning; 3.5.2 General Considerations; 3.6 CHOOSING A DATA MINING TECHNIQUE; 3.7 CHAPTER SUMMARY; 3.8 KEY TERMS; Section II: Tools for Knowledge Discovery; Chapter 4. …”
    Full text (MFA users only)
    Electronic eBook
  2. 142

    Data Mining.

    Published 2011
    Table of Contents: “…-- Decision Tree Induction -- GINI Index -- Entropy -- Misclassification Measure -- Practical Issues Regarding Decision Trees -- Predictive Accuracy -- STOP Condition for Split -- Pruning Decision Trees -- Extracting Classification Rules from Decision Trees -- Advantages of Decision Trees -- Data Mining Techniques and Models -- Data Mining Methods -- Bayesian Classifier -- Artificial Neural Networks -- Perceptron -- Types of Artificial Neural Networks -- Probabilistic Neural Networks -- Some Neural Networks Applications -- Support Vector Machines -- Association Rule Mining -- Rule-Based Classification -- k-Nearest Neighbor -- Rough Sets -- Clustering -- Hierarchical Clustering -- Non-hierarchical/Partitional Clustering -- Genetic Algorithms -- Components of GAs -- Architecture of GAs -- Applications -- Classification Performance Evaluation -- Costs and Classification Accuracy -- ROC (Receiver Operating Characteristic) Curve -- Statistical Methods for Comparing Classifiers -- References -- Index.…”
    Full text (MFA users only)
    Electronic eBook
  3. 143

    Data Science : The Executive Summary - a Technical Book for Non-Technical Professionals. by Cady, Field

    Published 2020
    Table of Contents: “…2.1.5 What Data Scientists Don't (Necessarily) Do -- 2.1.5.1 Working Without Data -- 2.1.5.2 Working with Data that Can't Be Interpreted -- 2.1.5.3 Replacing Subject Matter Experts -- 2.1.5.4 Designing Mathematical Algorithms -- 2.2 Data Science in an Organization -- 2.2.1 Types of Value Added -- 2.2.1.1 Business Insights -- 2.2.1.2 Intelligent Products -- 2.2.1.3 Building Analytics Frameworks -- 2.2.1.4 Offline Batch Analytics -- 2.2.2 One-Person Shops and Data Science Teams -- 2.2.3 Related Job Roles -- 2.2.3.1 Data Engineer -- 2.2.3.2 Data Analyst -- 2.2.3.3 Software Engineer…”
    Full text (MFA users only)
    Electronic eBook
  4. 144

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook
  5. 145
  6. 146

    Computer animation : algorithms and techniques by Parent, Rick

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  7. 147

    Error Correction Coding : Mathematical Methods and Algorithms. by Moon, Todd K.

    Published 2020
    Table of Contents: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Program Files -- List of Laboratory Exercises -- List of Algorithms -- List of Figures -- List of Tables -- List of Boxes -- About the Companion Website -- Part I Introduction and Foundations -- Chapter 1 A Context for Error Correction Coding -- 1.1 Purpose of This Book -- 1.2 Introduction: Where Are Codes? …”
    Full text (MFA users only)
    Electronic eBook
  8. 148

    Microscope Image Processing. by Wu, Qiang, 1958-

    Published 2008
    Full text (MFA users only)
    Electronic eBook
  9. 149

    Algorithms, architectures and information systems security

    Published 2009
    Table of Contents: “…Theory of a Practical Delaunay Meshing Algorithm for a Large Class of Domains S.-W. Cheng, T.K. …”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  10. 150
  11. 151

    Algorithmic Graph Theory and Perfect Graphs. by Rheinboldt, Werner

    Published 2014
    Table of Contents: “…The Design of Efficient Algorithms; 1. The Complexity of Computer Algorithms; 2. …”
    Full text (MFA users only)
    Electronic eBook
  12. 152
  13. 153

    Data intensive computing applications for big data

    Published 2018
    Table of Contents: “…Application of Big Data Analytics in Cloud Computing via Machine LearningA Novel Mechanism for Cloud Data Management in Distributed Environment; Spark SQL with Hive Context or SQL Context; Renewing Computing Paradigms for More Efficient Parallelization of Single-Threads; MongoDB as an Efficient Graph Database: An Application of Document Oriented NOSQL Database; Big Data Analytics for Prevention and Control of HIV/AIDS; Performance Analysis of Deadlock Prevention and MUTEX Detection Algorithms in Distributed Environment.…”
    Full text (MFA users only)
    Electronic eBook
  14. 154

    Hands-On Data Warehousing with Azure Data Factory : ETL techniques to load and transform data from various sources, both on-premises and on cloud. by Kamrat Gutzait, Michelle

    Published 2018
    Table of Contents: “…Ways to directly copy files into the Data LakePrerequisites for the next steps; Creating a Data Lake Analytics resource; Using the data factory to manipulate data in the Data Lake; Task 1 -- copy/import data from SQL Server to a blob storage file using data factory; Task 2 -- run a U-SQL task from the data factory pipeline to summarize data; Service principal authentication; Run U-SQL from a job in the Data Lake Analytics; Summary; Chapter 5: Machine Learning on the Cloud; Machine learning overview; Machine learning algorithms; Supervised learning; Unsupervised learning; Reinforcement learning.…”
    Full text (MFA users only)
    Electronic eBook
  15. 155
  16. 156

    Boosting : foundations and algorithms by Schapire, Robert E.

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  17. 157
  18. 158

    Computational Intelligence, Evolutionary Computing, Evolutionary Clustering Algorithms. by Kristensen, Terje

    Published 2016
    Table of Contents: “…Cluster Validation; Evolutionary Algorithms ; 3.1. INTRODUCTION; 3.1.1. Data Representation Chromosome; 3.1.2. …”
    Full text (MFA users only)
    Electronic eBook
  19. 159
  20. 160