Search Results - (((((((ant OR canton) OR span) OR wants) OR cantor) OR anne) OR carter) OR anting) algorithms.

  1. 221

    From complexity in the natural sciences to complexity in operation management systems by Briffaut, Jean-Pierre

    Published 2019
    Table of Contents: “…A complex system possesses a structure spanning several levels -- C.2.3. A complex system is capable of emerging behavior -- C.2.4. …”
    Full text (MFA users only)
    Electronic eBook
  2. 222

    Pediatric incontinence : evaluation and clinical management

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  3. 223

    Listed Volatility and Variance Derivatives : a Python-based Guide. by Hilpisch, Yves

    Published 2016
    Table of Contents: “…Chapter 2 Introduction to Python2.1 Python Basics; 2.1.1 Data Types; 2.1.2 Data Structures; 2.1.3 Control Structures; 2.1.4 Special Python Idioms; 2.2 NumPy; 2.3 matplotlib; 2.4 pandas; 2.4.1 pandas DataFrame class; 2.4.2 Input-Output Operations; 2.4.3 Financial Analytics Examples; 2.5 Conclusions; Chapter 3 Model-Free Replication of Variance; 3.1 Introduction; 3.2 Spanning with Options; 3.3 Log Contracts; 3.4 Static Replication of Realized Variance and Variance Swaps; 3.5 Constant Dollar Gamma Derivatives and Portfolios; 3.6 Practical Replication of Realized Variance.…”
    Full text (MFA users only)
    Electronic eBook
  4. 224
  5. 225

    Digitalization of Society and Socio-Political Issues. 1, Digital, Communication, and Culture

    Published 2019
    Table of Contents: “…The Digitalization of Cultural Policies in France 149; Anne BELLON 14.1.…”
    Full text (MFA users only)
    Electronic eBook
  6. 226

    Other geographies : the influences of Michael Watts

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  7. 227

    Oracle SOA Suite 11g Performance Cookbook. by Brasier, Matthew

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  8. 228

    Discovering knowledge in data : an introduction to data mining by Larose, Daniel T.

    Published 2014
    Table of Contents: “…DISCOVERING KNOWLEDGE IN DATA -- Contents -- Preface -- 1 An Introduction to Data Mining -- 1.1 What is Data Mining? -- 1.2 Wanted: Data Miners -- 1.3 The Need for Human Direction of Data Mining -- 1.4 The Cross-Industry Standard Practice for Data Mining -- 1.4.1 Crisp-DM: The Six Phases -- 1.5 Fallacies of Data Mining -- 1.6 What Tasks Can Data Mining Accomplish? …”
    Full text (MFA users only)
    Electronic eBook
  9. 229

    Building Machine Learning Systems with Python. by Richert, Willi

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  10. 230

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook
  11. 231

    Database technology for life sciences and medicine

    Published 2010
    Full text (MFA users only)
    Electronic eBook
  12. 232
  13. 233
  14. 234

    Computational models of argument : Proceedings of COMMA 2012

    Published 2012
    Table of Contents: “…Simari -- Automated Deployment of Argumentation Protocols / Michael Rovatsos -- On Preferred Extension Enumeration in Abstract Argumentation / Katie Atkinson -- Towards Experimental Algorithms for Abstract Argumentation / Katie Atkinson.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  15. 235

    Practical data analysis by Cuesta, Hector

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  16. 236

    Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization by Kim, Kwang-Yong, 1956-, Samad, Abdus, Benini, Ernesto

    Published 2019
    Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
    Full text (MFA users only)
    Electronic eBook
  17. 237
  18. 238

    Designing and Researching of Machines and Technologies for Modern Manufacture.

    Published 2015
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  19. 239
  20. 240

    IP multicast with applications to IPTV and mobile DVB-H by Minoli, Daniel, 1952-

    Published 2008
    Table of Contents: “…Cover -- TOC36;CONTENTS -- Preface -- About the Author -- CH36;1 INTRODUCTION TO IP MULTICAST -- 146;1 Introduction -- 146;2 Why Multicast Protocols are Wanted47;Needed -- 146;3 Basic Multicast Protocols and Concepts -- 146;4 IPTV and DVB45;H Applications -- 146;5 Course of Investigation -- Appendix 146;A58; Multicast IETF Request for Comments -- Appendix 146;B58; Multicast Bibliography -- References -- CH36;2 MULTICAST ADDRESSING FOR PAYLOAD -- 246;1 IP Multicast Addresses -- 246;146;1 Limited Scope Addresses -- 246;146;2 GLOP Addressing -- 246;146;3 Generic IPv4 Addressing -- 246;2 Layer 2 Multicast Addresses -- 246;246;1 Ethernet MAC Address Mapping -- 246;3 MPEG45;Layer Addresses -- References -- CH36;3 MULTICAST PAYLOAD FORWARDING -- 346;1 Multicasting on a LAN Segment -- 346;2 Multicasting between Network Segments -- 346;3 Multicast Distribution Trees -- 346;4 Multicast Forwarding58; Reverse Path Forwarding -- 346;5 Multicast Forwarding58; Center45;Based Tree Algorithm -- 346;6 Implementing IP Multicast in a Network -- References -- CH36;4 DYNAMIC HOST REGISTRATION8212;INTERNET GROUP MANAGEMENT PROTOCOL -- 446;1 IGMP Messages -- 446;2 IGMPv3 Messages -- 446;3 IGMP Operation -- Appendix 446;A58; Protocol Details for IGMPv2 -- 446;A46;1 Overview -- 446;A46;2 Protocol Description -- 446;A46;3 Receiver 40;Host41; State Diagram -- 446;A46;4 Router State Diagram -- Appendix 446;B58; IGMP Snooping Switches -- Appendix 446;C58; Example of Router Configurations -- References -- CH36;5 MULTICAST ROUTING8212;SPARSE45;MODE PROTOCOLS58; PROTOCOL INDEPENDENT MULTICAST -- 546;1 Introduction to PIM -- 546;2 PIM SM Details -- 546;246;1 Approach -- 546;246;2 PIM SM Protocol Overview -- 546;246;3 Detailed Protocol Description -- 546;246;4 Packet Formats -- References -- CH36;6 MULTICAST ROUTING8212;SPARSE45;MODE PROTOCOLS58; CORE45;BASED TREES -- 646;1 Motivation -- 646;2 Basic Operation -- 646;3 CBT Components and Functions -- 646;346;1 CBT Control Message Retransmission Strategy -- 646;346;2 Nonmember Sending -- 646;4 Core Router Discovery -- 646;5 Protocol Specification Details -- 646;546;1 CBT HELLO Protocol -- 646;546;2 JOIN_REQUEST Processing -- 646;546;3 JOIN_ACK Processing -- 646;546;4 QUIT_NOTIFICATION Processing -- 646;546;5 ECHO_REQUEST Processing -- 646;546;6 ECHO_REPLY Processing -- 646;546;7 FLUSH_TREE Processing -- 646;546;8 Nonmember Sending -- 646;546;9 Timers and Default Values -- 646;546;10 CBT Packet Formats and Message Types -- 646;546;11 Core Router Discovery -- 646;6 CBT Version 3 -- 646;646;1 The First Step58; Joining the Tree -- 646;646;2 Transient State -- 646;646;3 Getting 34;On Tree34; -- 646;646;4 Pruning and Prune State -- 646;646;5 The Forwarding Cache -- 646;646;6 Packet Forwarding -- 646;646;7 The 34;Keepalive34; Protocol -- 646;646;8 Control Message Precedence and Forwarding Criteria -- 646;646;9 Broadcast LANs -- 646;646;10 The 34;all45;cbt45;routers34; Group -- 646;646;11 Nonmember Sending -- References -- CH36;7 MULTICAST ROUTING8212;DENSE45;MODE PROTOCOLS58; PIM DM.…”
    Full text (MFA users only)
    Electronic eBook