Search Results - (((((((ant OR kwants) OR wantsa) OR makant) OR cantor) OR anne) OR shared) OR hints) algorithms.
Suggested Topics within your search.
Suggested Topics within your search.
- Artificial intelligence 25
- Data processing 24
- Mathematics 20
- Mathematical optimization 18
- Algorithms 17
- Mathematical models 16
- algorithms 16
- artificial intelligence 14
- Machine learning 13
- Technological innovations 13
- Data mining 12
- Information technology 12
- Computer algorithms 10
- Computer networks 10
- Management 10
- Big data 9
- Artificial Intelligence 8
- Neural networks (Computer science) 8
- Computer programming 7
- Social aspects 7
- Bioinformatics 6
- Computer science 6
- Design and construction 6
- Development 6
- Parallel processing (Electronic computers) 6
- Swarm intelligence 6
- Wireless communication systems 6
- Application software 5
- Computational Biology 5
- Computational biology 5
Search alternatives:
- ant »
- kwants »
- wantsa »
- makant »
- cantor »
-
301
Handbook of safety principles
Published 2018Table of Contents: “…Success or Failure / Ann Enander -- 30.8. Relations to Other Safety Principles / Ann Enander -- References / Ann Enander -- Further Reading / Ann Enander -- 31. …”
Full text (MFA users only)
Electronic eBook -
302
-
303
-
304
Business Hack : the Wealth Dragon Way to Build a Successful Business in the Digital Age.
Published 2018Full text (MFA users only)
Electronic eBook -
305
Machine learning and cognitive computing for mobile communications and wireless networks
Published 2020Table of Contents: “…KNN and SVM Models for Wireless 60 3.4.2 Bayesian Learning for Cognitive Radio 60 3.4.3 Deep Learning in Wireless Network 61 3.4.4 Deep Reinforcement Learning in Wireless Network 62 3.4.5 Traffic Engineering and Routing 63 3.4.6 Resource Sharing and Scheduling 64 3.4.7 Power Control and Data Collection 64 3.5 Conclusion 65 References 66 4 Cognitive Computing for Smart Communication 73; Poonam Sharma,…”
Full text (MFA users only)
Electronic eBook -
306
-
307
Experiencing architecture in the nineteenth century : buildings and society in the modern age
Published 2019Full text (MFA users only)
Electronic eBook -
308
Advances in intelligent transportation : system and technology : selected, peer reviewed papers from the 1st International Doctoral Annual Symposium on Intelligent Transportation T...
Published 2012Full text (MFA users only)
Electronic Conference Proceeding eBook -
309
Information engineering for mechanics and materials research
Published 2013Full text (MFA users only)
Electronic Conference Proceeding eBook -
310
Mobile phones : technology, networks, and user issues
Published 2011Table of Contents: “…Seamless Sensor Fusion -- 4.1. Particle Filter Algorithm -- 4.2. Motion Model -- 4.3. Measurement Model -- 4.4. …”
Full text (MFA users only)
Electronic eBook -
311
Artificial intelligence and data mining approaches in security frameworks
Published 2021Table of Contents: “…87 -- 5.1.2 Purpose of Spamming 88 -- 5.1.3 Spam Filters Inputs and Outputs 88 -- 5.2 Content-Based Spam Filtering Techniques 89 -- 5.2.1 Previous Likeness–Based Filters 89 -- 5.2.2 Case-Based Reasoning Filters 89 -- 5.2.3 Ontology-Based E-Mail Filters 90 -- 5.2.4 Machine-Learning Models 90 -- 5.2.4.1 Supervised Learning 90 -- 5.2.4.2 Unsupervised Learning 90 -- 5.2.4.3 Reinforcement Learning 91 -- 5.3 Machine Learning–Based Filtering 91 -- 5.3.1 Linear Classifiers 91 -- 5.3.2 Naïve Bayes Filtering 92 -- 5.3.3 Support Vector Machines 94 -- 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 94 -- 5.4 Performance Analysis 97 -- 5.5 Conclusion 97 -- References 98 -- 6 Artificial Intelligence in the Cyber Security Environment 101 Jaya Jain -- 6.1 Introduction 102 -- 6.2 Digital Protection and Security Correspondences Arrangements 104 -- 6.2.1 Operation Safety and Event Response 105 -- 6.2.2 AI2 105 -- 6.2.2.1 CylanceProtect 105 -- 6.3 Black Tracking 106 -- 6.3.1 Web Security 107 -- 6.3.1.1 Amazon Macie 108 -- 6.4 Spark Cognition Deep Military 110 -- 6.5 The Process of Detecting Threats 111 -- 6.6 Vectra Cognito Networks 112 -- 6.7 Conclusion 115 -- References 115 -- 7 Privacy in Multi-Tenancy Frameworks Using AI 119 Shweta Solanki -- 7.1 Introduction 119 -- 7.2 Framework of Multi-Tenancy 120 -- 7.3 Privacy and Security in Multi-Tenant Base System Using AI 122 -- 7.4 Related Work 125 -- 7.5 Conclusion 125 -- References 126 -- 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 129 Shubhi Srivastava, Ankit Kumar and Shiv Prakash -- 8.1 Introduction 129 -- 8.1.1 Biometric 131 -- 8.1.2 Categories of Biometric 131 -- 8.1.2.1 Advantages of Biometric 132 -- 8.1.3 Significance and Scope 132 -- 8.1.4 Biometric Face Recognition 132 -- 8.1.5 Related Work 136 -- 8.1.6 Main Contribution 136 -- 8.1.7 Novelty Discussion 137 -- 8.2 The Proposed Methodolgy 139 -- 8.2.1 Face Detection Using Haar Algorithm 139 -- 8.2.2 Feature Extraction Using ILBP 141 -- 8.2.3 Dataset 143 -- 8.2.4 Classification Using SVM 143 -- 8.3 Experimental Results 145 -- 8.3.1 Face Detection 146 -- 8.3.2 Feature Extraction 146 -- 8.3.3 Recognize Face Image 147 -- 8.4 Conclusion 151 -- References 152 -- 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using ANN and IoT 155 S K Rajesh Kanna, O. …”
Full text (MFA users only)
Electronic eBook -
312
-
313
Fog and fogonomics : challenges and practices of fog computing, communication, networking, strategy, and economics
Published 2020Table of Contents: “…3.3.1.2 Computation Task Models 68 -- 3.3.1.3 Quality of Experience 71 -- 3.3.2 Computation Offloading Game 71 -- 3.3.2.1 Game Formulation 71 -- 3.3.2.2 Algorithm Development 74 -- 3.3.2.3 Price of Anarchy 74 -- 3.3.2.4 Performance Evaluation 75 -- 3.4 Conclusion 80 -- References 80 -- 4 Pricing Tradeoffs for Data Analytics in Fog-Cloud Scenarios 83 /Yichen Ruan, Liang Zheng, Maria Gorlatova, Mung Chiang, and Carlee Joe-Wong -- 4.1 Introduction: Economics and Fog Computing 83 -- 4.1.1 Fog Application Pricing 85 -- 4.1.2 Incentivizing Fog Resources 86 -- 4.1.3 A Fogonomics Research Agenda 86 -- 4.2 Fog Pricing Today 87 -- 4.2.1 Pricing Network Resources 87 -- 4.2.2 Pricing Computing Resources 89 -- 4.2.3 Pricing and Architecture Trade-offs 89 -- 4.3 Typical Fog Architectures 90 -- 4.3.1 Fog Applications 90 -- 4.3.2 The Cloud-to-Things Continuum 90 -- 4.4 A Case Study: Distributed Data Processing 92 -- 4.4.1 A Temperature Sensor Testbed 92 -- 4.4.2 Latency, Cost, and Risk 95 -- 4.4.3 System Trade-off: Fog or Cloud 98 -- 4.5 Future Research Directions 101 -- 4.6 Conclusion 102 -- Acknowledgments 102 -- References 103 -- 5 Quantitative and Qualitative Economic Benefits of Fog 107 /Joe Weinman -- 5.1 Characteristics of Fog Computing Solutions 108 -- 5.2 Strategic Value 109 -- 5.2.1 Information Excellence 110 -- 5.2.2 Solution Leadership 110 -- 5.2.3 Collective Intimacy 110 -- 5.2.4 Accelerated Innovation 111 -- 5.3 Bandwidth, Latency, and Response Time 111 -- 5.3.1 Network Latency 113 -- 5.3.2 Server Latency 114 -- 5.3.3 Balancing Consolidation and Dispersion to Minimize Total Latency 114 -- 5.3.4 Data Traffic Volume 115 -- 5.3.5 Nodes and Interconnections 116 -- 5.4 Capacity, Utilization, Cost, and Resource Allocation 117 -- 5.4.1 Capacity Requirements 117 -- 5.4.2 Capacity Utilization 118 -- 5.4.3 Unit Cost of Delivered Resources 119 -- 5.4.4 Resource Allocation, Sharing, and Scheduling 120 -- 5.5 Information Value and Service Quality 120 -- 5.5.1 Precision and Accuracy 120.…”
Full text (MFA users only)
Electronic eBook -
314
-
315
-
316
Normal and abnormal fetal face atlas : ultrasonographic features
Published 2017Full text (MFA users only)
Electronic eBook -
317
Understanding smart sensors
Published 2013Table of Contents: “…ZigBee-Like Wireless -- 8.3.3. ANT+ -- 8.3.4.6LoWPAN -- 8.3.5. Near Field Communication (NFC) -- 8.3.6.Z-Wave -- 8.3.7. …”
Full text (MFA users only)
Electronic eBook -
318
Official Google Cloud Certified Professional Data Engineer study guide
Published 2020Table of Contents: “…Row Key Access 13 -- Unstructured Data 15 -- Google's Storage Decision Tree 16 -- Schema Design Considerations 16 -- Relational Database Design 17 -- NoSQL Database Design 20 -- Exam Essentials 23 -- Review Questions 24 -- Chapter 2 Building and Operationalizing Storage Systems 29 -- Cloud SQL 30 -- Configuring Cloud SQL 31 -- Improving Read Performance with Read Replicas 33 -- Importing and Exporting Data 33 -- Cloud Spanner 34 -- Configuring Cloud Spanner 34 -- Replication in Cloud Spanner 35 -- Database Design Considerations 36 -- Importing and Exporting Data 36 -- Cloud Bigtable 37 -- Configuring Bigtable 37 -- Database Design Considerations 38 -- Importing and Exporting 39 -- Cloud Firestore 39 -- Cloud Firestore Data Model 40 -- Indexing and Querying 41 -- Importing and Exporting 42 -- BigQuery 42 -- BigQuery Datasets 43 -- Loading and Exporting Data 44 -- Clustering, Partitioning, and Sharding Tables 45 -- Streaming Inserts 46 -- Monitoring and Logging in BigQuery 46 -- BigQuery Cost Considerations 47 -- Tips for Optimizing BigQuery 47 -- Cloud Memorystore 48 -- Cloud Storage 50 -- Organizing Objects in a Namespace 50 -- Storage Tiers 51 -- Cloud Storage Use Cases 52 -- Data Retention and Lifecycle Management 52 -- Unmanaged Databases 53 -- Exam Essentials 54 -- Review Questions 56 -- Chapter 3 Designing Data Pipelines 61 -- Overview of Data Pipelines 62 -- Data Pipeline Stages 63 -- Types of Data Pipelines 66 -- GCP Pipeline Components 73 -- Cloud Pub/Sub 74 -- Cloud Dataflow 76 -- Cloud Dataproc 79 -- Cloud Composer 82 -- Migrating Hadoop and Spark to GCP 82 -- Exam Essentials 83 -- Review Questions 86 -- Chapter 4 Designing a Data Processing Solution 89 -- Designing Infrastructure 90 -- Choosing Infrastructure 90 -- Availability, Reliability, and Scalability of Infrastructure 93 -- Hybrid Cloud and Edge Computing 96 -- Designing for Distributed Processing 98 -- Distributed Processing: Messaging 98 -- Distributed Processing: Services 101 -- Migrating a Data Warehouse 102 -- Assessing the Current State of a Data Warehouse 102 -- Designing the Future State of a Data Warehouse 103 -- Migrating Data, Jobs, and Access Controls 104 -- Validating the Data Warehouse 105 -- Exam Essentials 105 -- Review Questions 107 -- Chapter 5 Building and Operationalizing Processing Infrastructure 111 -- Provisioning and Adjusting Processing Resources 112 -- Provisioning and Adjusting Compute Engine 113 -- Provisioning and Adjusting Kubernetes Engine 118 -- Provisioning and Adjusting Cloud Bigtable 124 -- Provisioning and Adjusting Cloud Dataproc 127 -- Configuring Managed Serverless Processing Services 129 -- Monitoring Processing Resources 130 -- Stackdriver Monitoring 130 -- Stackdriver Logging 130 -- Stackdriver Trace 131 -- Exam Essentials 132 -- Review Questions 134 -- Chapter 6 Designing for Security and Compliance 139 -- Identity and Access Management with Cloud IAM 140 -- Predefined Roles 141 -- Custom Roles 143 -- Using Roles with Service Accounts 145 -- Access Control with Policies 146 -- Using IAM with Storage and Processing Services 148 -- Cloud Storage and IAM 148 -- Cloud Bigtable and IAM 149 -- BigQuery and IAM 149 -- Cloud Dataflow and IAM 150 -- Data Security 151 -- Encryption 151 -- Key Management 153 -- Ensuring Privacy with the Data Loss Prevention API 154 -- Detecting Sensitive Data 154 -- Running Data Loss Prevention Jobs 155 -- Inspection Best Practices 156 -- Legal Compliance 156 -- Health Insurance Portability and Accountability Act (HIPAA) 156 -- Children's Online Privacy Protection Act 157 -- FedRAMP 158 -- General Data Protection Regulation 158 -- Exam Essentials 158 -- Review Questions 161 -- Chapter 7 Designing Databases for Reliability, Scalability, and Availability 165 -- Designing Cloud Bigtable Databases for Scalability and Reliability 166 -- Data Modeling with Cloud Bigtable 166 -- Designing Row-keys 168 -- Designing for Time Series 170 -- Use Replication for Availability and Scalability 171 -- Designing Cloud Spanner Databases for Scalability and Reliability 172 -- Relational Database Features 173 -- Interleaved Tables 174 -- Primary Keys and Hotspots 174 -- Database Splits 175 -- Secondary Indexes 176 -- Query Best Practices 177 -- Designing BigQuery Databases for Data Warehousing 179 -- Schema Design for Data Warehousing 179 -- Clustered and Partitioned Tables 181 -- Querying Data in BigQuery 182 -- External Data Access 183 -- BigQuery ML 185 -- Exam Essentials 185 -- Review Questions 188 -- Chapter 8 Understanding Data Operations for Flexibility and Portability 191 -- Cataloging and Discovery with Data Catalog 192 -- Searching in Data Catalog 193 -- Tagging in Data Catalog 194 -- Data Preprocessing with Dataprep 195 -- Cleansing Data 196 -- Discovering Data 196 -- Enriching Data 197 -- Importing and Exporting Data 197 -- Structuring and Validating Data 198 -- Visualizing with Data Studio 198 -- Connecting to Data Sources 198 -- Visualizing Data 200 -- Sharing Data 200 -- Exploring Data with Cloud Datalab 200 -- Jupyter Notebooks 201 -- Managing Cloud Datalab Instances 201 -- Adding Libraries to Cloud Datalab Instances 202 -- Orchestrating Workflows with Cloud Composer 202 -- Airflow Environments 203 -- Creating DAGs 203 -- Airflow Logs 204 -- Exam Essentials 204 -- Review Questions 206 -- Chapter 9 Deploying Machine Learning Pipelines 209 -- Structure of ML Pipelines 210 -- Data Ingestion 211 -- Data Preparation 212 -- Data Segregation 215 -- Model Training 217 -- Model Evaluation 218 -- Model Deployment 220 -- Model Monitoring 221 -- GCP Options for Deploying Machine Learning Pipeline 221 -- Cloud AutoML 221 -- BigQuery ML 223 -- Kubeflow 223 -- Spark Machine Learning 224 -- Exam Essentials 225 -- Review Questions 227 -- Chapter 10 Choosing Training and Serving Infrastructure 231 -- Hardware Accelerators 232 -- Graphics Processing Units 232 -- Tensor Processing Units 233 -- Choosing Between CPUs, GPUs, and TPUs 233 -- Distributed and Single Machine Infrastructure 234 -- Single Machine Model Training 234 -- Distributed Model Training 235 -- Serving Models 236 -- Edge Computing with GCP 237 -- Edge Computing Overview 237 -- Edge Computing Components and Processes 239 -- Edge TPU 240 -- Cloud IoT 240 -- Exam Essentials 241 -- Review Questions 244 -- Chapter 11 Measuring, Monitoring, and Troubleshooting Machine Learning Models 247 -- Three Types of Machine Learning Algorithms 248 -- Supervised Learning 248 -- Unsupervised Learning 253 -- Anomaly Detection 254 -- Reinforcement Learning 254 -- Deep Learning 255 -- Engineering Machine Learning Models 257 -- Model Training and Evaluation 257 -- Operationalizing ML Models 262 -- Common Sources of Error in Machine Learning Models 263 -- Data Quality 264 -- Unbalanced Training Sets 264 -- Types of Bias 264 -- Exam Essentials 265 -- Review Questions 267 -- Chapter 12 Leveraging Prebuilt Models as a Service 269 -- Sight 270 -- Vision AI 270 -- Video AI 272 -- Conversation 274 -- Dialogflow 274 -- Cloud Text-to-Speech API 275 -- Cloud Speech-to-Text API 275 -- Language 276 -- Translation 276 -- Natural Language 277 -- Structured Data 278 -- Recommendations AI API 278 -- Cloud Inference API 280 -- Exam Essentials 280 -- Review Questions 282 -- Appendix Answers to Review Questions 285 -- Chapter 1: Selecting Appropriate Storage Technologies 286 -- Chapter 2: Building and Operationalizing Storage Systems 288 -- Chapter 3: Designing Data Pipelines 290 -- Chapter 4: Designing a Data Processing Solution 291 -- Chapter 5: Building and Operationalizing Processing Infrastructure 293 -- Chapter 6: Designing for Security and Compliance 295 -- Chapter 7: Designing Databases for Reliability, Scalability, and Availability 296 -- Chapter 8: Understanding Data Operations for Flexibility and Portability 298 -- Chapter 9: Deploying Machine Learning Pipelines 299 -- Chapter 10: Choosing Training and Serving Infrastructure 301 -- Chapter 11: Measuring, Monitoring, and Troubleshooting Machine Learning Models 303 -- Chapter 12: Leveraging Prebuilt Models as a Service 304 -- Index 307.…”
Full text (MFA users only)
Electronic eBook -
319
Towards human-UAV physical interaction and fully actuated aerial vehicles
Published 2018Full text (MFA users only)
Electronic eBook -
320
Goliath's revenge : how established companies turn the tables on digital disruptors
Published 2019Full text (MFA users only)
Electronic eBook