Search Results - (((((((ant OR manthe) OR find) OR mantis) OR cantor) OR anne) OR halted) OR grwanting) algorithms.

  1. 201

    Artificial intelligence for big data : complete guide to automating big data solutions using artificial intelligence techniques. by Deshpande, Anand

    Published 2018
    Table of Contents: “…Snowball stemming -- Lancaster stemming -- Lovins stemming -- Dawson stemming -- Lemmatization -- N-grams -- Feature extraction -- One hot encoding -- TF-IDF -- CountVectorizer -- Word2Vec -- CBOW -- Skip-Gram model -- Applying NLP techniques -- Text classification -- Introduction to Naive Bayes' algorithm -- Random Forest -- Naive Bayes' text classification code example -- Implementing sentiment analysis -- Frequently asked questions -- Summary -- Chapter 7: Fuzzy Systems -- Fuzzy logic fundamentals -- Fuzzy sets and membership functions -- Attributes and notations of crisp sets -- Operations on crisp sets -- Properties of crisp sets -- Fuzzification -- Defuzzification -- Defuzzification methods -- Fuzzy inference -- ANFIS network -- Adaptive network -- ANFIS architecture and hybrid learning algorithm -- Fuzzy C-means clustering -- NEFCLASS -- Frequently asked questions -- Summary -- Chapter 8: Genetic Programming -- Genetic algorithms structure -- KEEL framework -- Encog machine learning framework -- Encog development environment setup -- Encog API structure -- Introduction to the Weka framework -- Weka Explorer features -- Preprocess -- Classify -- Attribute search with genetic algorithms in Weka -- Frequently asked questions -- Summary -- Chapter 9: Swarm Intelligence -- Swarm intelligence -- Self-organization -- Stigmergy -- Division of labor -- Advantages of collective intelligent systems -- Design principles for developing SI systems -- The particle swarm optimization model -- PSO implementation considerations -- Ant colony optimization model -- MASON Library -- MASON Layered Architecture -- Opt4J library -- Applications in big data analytics -- Handling dynamical data -- Multi-objective optimization -- Frequently asked questions -- Summary -- Chapter 10: Reinforcement Learning -- Reinforcement learning algorithms concept.…”
    Full text (MFA users only)
    Electronic eBook
  2. 202

    Cognitive foundations of musical pitch by Krumhansl, Carol L.

    Published 2001
    Table of Contents: “…Statistical analyses of tonal compositions Tonal distributions and tonal hierarchies; Tonal hierarchies, tonal consonance, and tonal distributions; 4. A KEY-FINDING ALGORITHM BASED ON TONAL HIERARCHIES; The key-finding algorithm; Application I: initial segments of preludes of J.S. …”
    Full text (MFA users only)
    Electronic eBook
  3. 203

    Industrial and Applied Mathematics in China. by Li, Tatsien

    Published 2014
    Table of Contents: “…Mathematical Problems in System-on-Chip Design and ManufactureA New Reconstruction Algorithm for Cone-beam CT with Unilateral Off-centered RT Multi-scan; Bioluminescence Tomography Reconstruction by Radial Basis Function Collocation Method.…”
    Full text (MFA users only)
    Electronic eBook
  4. 204
  5. 205
  6. 206

    Computational ecology : graphs, networks and agent-based modeling by Zhang, Wenjun

    Published 2012
    Table of Contents: “…Paton's fundamental circuit finding algorithm; 1.2.2. Chan's circuit matrix algorithm; 1.3. …”
    Full text (MFA users only)
    Electronic eBook
  7. 207

    Apache Spark Machine Learning Blueprints. by Liu, Alex

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  8. 208

    Data analytics and big data by Sedkaoui, Soraya

    Published 2018
    Table of Contents: “…Data analytics and machine learning: the relevance of algorithms -- Machine learning: a method of data analysis that automates analytical model building -- Supervised versus unsupervised algorithms: a guided tour -- Applications and examples.…”
    Full text (MFA users only)
    Electronic eBook
  9. 209

    Graph Partitioning. by Bichot, Charles-Edmond

    Published 2013
    Table of Contents: “…Hendrickson-Leland coarsening algorithm; 2.3.4. The Heavy Edge Matching (HEM) algorithm; 2.4. …”
    Full text (MFA users only)
    Electronic eBook
  10. 210

    A practical guide to error-control coding using Matlab by Jiang, Yuan

    Published 2010
    Full text (MFA users only)
    Electronic eBook
  11. 211

    Hardness of Approximation Between P and NP by Rubinstein, Aviad

    Published 2019
    Full text (MFA users only)
    Electronic eBook
  12. 212

    Nonlinear systems and optimization for the chemical engineer : solving numerical problems by Buzzi-Ferraris, G. (Guido), Manenti, Flavio

    Published 2013
    Table of Contents: “…Nonlinear Systems and Optimization for the Chemical Engineer: Solving Numerical Problems; Contents; Preface; 1 Function Root-Finding; 1.1 Introduction; 1.2 Substitution Algorithms; 1.3 Bolzano's Algorithm; 1.4 Function Approximation; 1.4.1 Newton's Method; 1.4.2 The Secant Method; 1.4.3 Regula Falsi Method; 1.4.4 Muller's Method or Parabolic Interpolation; 1.4.5 Hyperbolic Interpolation Method; 1.4.6 Inverse Polynomial Interpolation Method; 1.4.7 Inverse Rational Interpolation Method; 1.5 Use of a Multiprocessor Machine with a Known Interval of Uncertainty.…”
    Full text (MFA users only)
    Electronic eBook
  13. 213
  14. 214

    Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application. by Rajan, Krishna

    Published 2013
    Table of Contents: “…Dimensionality Reduction Methods: Algorithms, Advantages, and Disadvantages; 3.1 Principal Component Analysis (PCA); PCA Algorithm; 3.2 Isomap; Isomap Algorithm; 3.3 Locally Linear Embedding; LLE Algorithm; 3.4 Hessian LLE; hLLE Algorithm; 4. …”
    Full text (MFA users only)
    Electronic eBook
  15. 215

    Mastering SciPy. by Blanco-Silva, Francisco J.

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  16. 216

    Tapas in Experimental Mathematics. by Amdeberhan, Tewodros

    Published 2008
    Table of Contents: “…""Contents""; ""Preface""; ""Two dimensional directed lattice walks with boundaries""; ""Computer-assisted discovery and proof""; ""On the collection of integers that index the fixed points of maps on the space of rational functions""; ""Questionable claims found in Ramanujan's lost notebook""; ""Partition polynomials: Asymptotics and zeros""; ""Hypergeometric functions related to series acceleration formulas""; ""Using integer relations algorithms for finding relationships among functions""; ""Conjecturing the optimal order of the components of the Li/Keiper constants""…”
    Full text (MFA users only)
    Conference Proceeding eBook
  17. 217

    Hack proofing your network

    Published 2002
    Table of Contents: “…</br><br> Looking to the Source Code</br><br> Exploring Diff Tools</br><br> Using File-Comparison Tools</br><br> Working with Hex Editors</br><br> Utilizing File System Monitoring Tools</br><br> Finding Other Tools</br><br> Troubleshooting</br><br> Problems with Checksums and Hashes</br><br> Problems with Compression and Encryption</br><br> Summary</br><br> Solutions Fast Track</br><br> Frequently Asked Questions</br><br>Chapter 6 Cryptography</br><br> Introduction</br><br> Understanding Cryptography Concepts</br><br> History</br><br> Encryption Key Types</br><br> Learning about Standard Cryptographic Algorithms</br><br> Understanding Symmetric Algorithms</br><br> Understanding Asymmetric Algorithms</br><br> Understanding Brute Force</br><br> Brute Force Basics</br><br> Using Brute Force to Obtain Passwords</br><br> Knowing When Real Algorithms Are Being Used Improperly</br><br> Bad Key Exchanges</br><br> Hashing Pieces Separately</br><br> Using a Short Password to Generate a Long Key</br><br> Improperly Stored Private or Secret Keys</br><br> Understanding Amateur Cryptography Attempts</br><br> Classifying the Ciphertext</br><br> Monoalphabetic Ciphers</br><br> Other Ways to Hide Information</br><br> Summary</br><br> Solutions Fast Track</br><br> Frequently Asked Questions</br><br>Chapter 7 Unexpected Input</br><br> Introduction</br><br> Understanding Why Unexpected Data Is Dangerous</br><br> Finding Situations Involving Unexpected Data</br><br> Local Applications and Utilities</br><br> HTTP/HTML</br><br> Unexpected Data in SQL Queries</br><br> Application Authentication</br><br> Disguising the Obvious</br><br> Using Techniques to Find and Eliminate Vulnerabilities</br><br> Black-Box Testing</br><br> Use the Source</br><br> Untaint Data by Filtering It</br><br> Escaping Characters Is Not Always Enough</br><br> Perl</br><br> Cold Fusion/Cold Fusion Markup Language (CFML)</br><br> ASP</br><br> PHP</br><br> Protecting Your SQL Queries</br><br> Silently Removing versus Alerting on Bad Data</br><br> Invalid Input Function</br><br> Token Substitution</br><br> Utilizing the Available Safety Features in Your Programming Language</br><br> Perl</br><br> PHP</br><br> ColdFusion/ColdFusion Markup Language</br><br> ASP</br><br> MySQL</br><br> Using Tools to Handle Unexpected Data</br><br> Web Sleuth</br><br> CGIAudit</br><br> RATS</br><br> Flawfinder</br><br> Retina</br><br> Hailstorm</br><br> Pudding</br><br> Summary</br><br> Solutions Fast Track</br><br> Frequently Asked Questions</br><br>Chapter 8 Buffer Overflow</br><br> Introduction</br><br> Understanding the Stack</br><br> The Stack Dump</br><br> Oddities and the Stack</br><br> Understanding the Stack Frame</br><br> Introduction to the Stack Frame</br><br> Passing Arguments to a Function: A Sample Program</br><br> Stack Frames and Calling Syntaxes</br><br> Learning about Buffer Overflows</br><br> A Simple Uncontrolled Overflow: A Sample Program</br><br> Creating Your First Overflow</br><br> Creating a Program with an Exploitable Overflow</br><br> Performing the Exploit</br><br> Learning Advanced Overflow Techniques </br><br> Stack Based Function Pointer Overwrite</br><br> Heap Overflows</br><br> Advanced Payload Design</br><br> Using What You Already Have</br><br> Summary</br><br> Solutions Fast Track</br><br> Frequently Asked Questions</br><br>Chapter 9 Format Strings</br><br> Introduction</br><br> Understanding Format String Vulnerabilities</br><br> Why and Where Do Format String Vulnerabilities Exist?…”
    Full text (MFA users only)
    Electronic eBook
  18. 218

    Generative design by Agkathidis, Asterios, 1974-

    Published 2015
    Table of Contents: “…Intro; 1.0 Introduction to Generative Design; 2.0 Continuous Surfaces; 3.0 Modularity and Accumulation; 4.0 Deformation and Subtraction; 5.0 Algorithmic Patterns; 6.0 Triangulation ; 7.0 Conclusion: The Digital Vs Physical Debate ; Bibliography ; Index; Picture Credits; Acknowledgements; 1.1 Design methods in architecture: A brief review; 1.2 Generative form-finding processes; 1.3 The approach of this book; 2.1 Soft mesh; 2.2 Double-curved shells; 2.3 Hyper paraboloids; 3.1 Interlocking units; 3.2 Irregular units; 4.1 Twisted block; 4.2 Porous space; 5.1 Tessellated planes…”
    Full text (MFA users only)
    Electronic eBook
  19. 219

    Advances in time series forecasting. Volume 2

    Published 2017
    Table of Contents: “…INTRODUCTION -- CLASSICAL TIME SERIES FORECASTING MODELS -- ARTIFICIAL NEURAL NETWORKS FOR FORECASTING TIME SERIES -- A NEW ARTIFICIAL NEURAL NETWORK WITH DETERMINISTIC COMPONENTS -- APPLICATIONS -- CONCLUSION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A Fuzzy Time Series Approach Based on Genetic Algorithm with Single Analysis Process -- Ozge Cagcag Yolcu* -- INTRODUCTION -- FUZZY TIME SERIES -- RELATED METHODS -- Genetic Algorithm (GA) -- Single Multiplicative Neuron Model -- PROPOSED METHOD -- APPLICATIONS -- CONCLUSION AND DISCUSSION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Forecasting Stock Exchanges with Fuzzy Time Series Approach Based on Markov Chain Transition Matrix -- Cagdas Hakan Aladag1,* and Hilal Guney2 -- INTRODUCTION -- FUZZY TIME SERIES -- TSAUR 'S FUZZY TIME SERIES MARKOV CHAIN MODEL -- THE IMPLEMENTATION -- CONCLUSION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A New High Order Multivariate Fuzzy Time Series Forecasting Model -- Ufuk Yolcu* -- INTRODUCTION -- RELATED METHODOLOGY -- The Fuzzy C-Means (FCM) Clustering Method -- Single Multiplicative Neuron Model Artificial Neural Network (SMN-ANN) -- Fuzzy Time Series -- THE PROPOSED METHOD -- APPLICATIONS -- CONCLUSIONS AND DISCUSSION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Fuzzy Functions Approach for Time Series Forecasting -- Ali Z. …”
    Full text (MFA users only)
    Electronic eBook
  20. 220

    Lectures in real geometry

    Published 1996
    Table of Contents: “…Foreword -- Introduction -- Basic algorithms in real algebraic geometry and their complexity: from Sturmâ€?…”
    Full text (MFA users only)
    Electronic eBook