Search Results - (((((((ant OR manthe) OR kind) OR semantic) OR cantor) OR anne) OR halted) OR ranting) algorithms.
Suggested Topics within your search.
Suggested Topics within your search.
- Artificial intelligence 38
- Data processing 26
- Mathematics 21
- Mathematical models 19
- artificial intelligence 18
- Machine learning 16
- Mathematical optimization 16
- Data mining 15
- Computer science 13
- Algorithms 12
- Information technology 12
- Artificial Intelligence 11
- Neural networks (Computer science) 11
- Technological innovations 11
- algorithms 11
- Social aspects 9
- Computational linguistics 8
- Computer networks 8
- Data Mining 8
- Electronic data processing 8
- Design and construction 7
- Management 7
- Neural Networks, Computer 7
- Big data 6
- Computer security 6
- Computer simulation 6
- History 6
- Natural language processing (Computer science) 6
- Pattern recognition systems 6
- computational linguistics 6
Search alternatives:
- ant »
- manthe »
- semantic »
- cantor »
- ranting »
- kind »
- halted »
-
341
Stochastic filtering with applications in finance
Published 2010Table of Contents: “…Economic convergence in a filtering framework. 3.3. Ex-ante equity risk premium. 3.4. Concluding remarks -- 4. …”
Full text (MFA users only)
Electronic eBook -
342
Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization
Published 2019Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
Full text (MFA users only)
Electronic eBook -
343
From complexity in the natural sciences to complexity in operation management systems
Published 2019Table of Contents: “…Complexity in perspective -- 1.2.1. Etymology and semantics -- 1.2.2. Methods proposed for dealing with complexity from the Middle Ages to the 17th Century and their current outfalls -- 1.3. …”
Full text (MFA users only)
Electronic eBook -
344
Advances in data science : symbolic, complex, and network data
Published 2020Table of Contents: “…What are “classes” and “class of complex data”? 7 -- 1.2.3. Which kind of class variability? 7 -- 1.2.4. What are “symbolic variables” and “symbolic data tables”? …”
Full text (MFA users only)
Electronic eBook -
345
Road traffic : safety, modeling & impacts
Published 2009Table of Contents: “…Semi-dynamic Updated Forecast and Dynamic Updated Forecast -- SUMMARY -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 8 OPTIMIZATION ALGORITHMS FOR SIGNALIZED ROAD NETWORK DESIGN PROBLEM -- ABSTRACT -- 1. …”
Full text (MFA users only)
Electronic eBook -
346
Credit securitizations and derivatives : challenges for the global markets
Published 2013Table of Contents: “…Market Credit Risk Pricing -- Regulation -- Developments in Structured Finance Markets -- Impairments of Asset-Backed Securities and Outstanding Ratings -- Issuance of Asset-backed Securities and Outstanding Volume -- Global CDO Issuance and Outstanding Volume -- PART II CREDIT PORTFOLIO RISK MEASUREMENT -- Mortgage Credit Risk -- Five C's of Credit and Mortgage Credit Risk -- Determinants of Mortgage Default, Loss Given Default and Exposure at Default -- Determinants of Mortgage Default -- Determinants of Mortgage LGD -- Determinants of Mortgage EAD -- Modeling Methods for Default, LGD and EAD -- Model Risk Management -- Credit Portfolio Correlations and Uncertainty -- Introduction -- Gaussian and Semi-Gaussian Single Risk Factor Model -- Individual and Simultaneous Confidence Bounds and Intervals -- Confidence Intervals for Asset Correlations -- Confidence Intervals for Default and Survival Time Correlations -- Confidence Intervals for Default Correlations -- Confidence Intervals for Survival Time Correlations -- Credit Portfolio Correlations with Dynamic Leverage Ratios -- The Hui et al. (2007) Model -- The Method of Images for Constant Coefficients -- The Method of Images for Time-Varying Coefficients -- Modelling Default Correlations in a Two-Firm Model -- Default Correlations -- A Two-Firm Model with Dynamic Leverage Ratios -- Method of Images for Constant Coefficients -- Method of Images for Time-Varying Coefficients -- Alternative Methodologies for General Values -- Numerical Results -- Accuracy -- The Impact of Correlation between Two Firms -- The Impact of Different Credit Quality Paired Firms -- The Impact of Volatilities -- The Impact of Drift Levels -- The Impact of Initial Value of Leverage Ratio Levels -- Impact of Correlation between Firms and Interest Rates -- The Price of Credit-Linked Notes -- A Hierarchical Model of Tail-Dependent Asset Returns -- The Variance Compound Gamma Model -- Multivariate Process for Logarithmic Asset Returns -- Dependence Structure -- Sampling -- Copula Properties -- An Application Example -- Portfolio Setup -- Test Portfolios -- Parameter Setup -- Simulation Results -- Importance Sampling Algorithm -- Conclusions -- Appendix A: The VCG Probability Distribution Function Appendix B: HAC Representation for the VCG Framework -- Monte Carlo Methods for Portfolio Credit Risk -- Modeling Credit Portfolio Losses -- Risk Measures -- Modeling Dependency -- Estimating Risk Measures via Monte Carlo -- Crude Monte Carlo Estimators -- Importance Sampling -- Specific Models -- The Bernoulli Mixture Model -- Factor Models -- Copula Models -- Intensity Models -- An Example Point Process Model -- Appendix A: A Primer on Rare-event Simulation -- Efficiency -- Importance Sampling -- The Choice of g -- Adaptive Importance Sampling -- Importance Sampling for Stochastic Processes -- Credit Portfolio Risk and Diversification -- Introduction -- Model Setup -- Independent Asset Values -- Correlated Asset Values -- Large Portfolio Limit -- Correlated Diffusion -- Correlated GARCH Process -- Applications of the Structural Recovery Rate -- Conclusions -- PART III CREDIT PORTFOLIO RISK SECURITIZATION AND TRANCHING -- Differences in Tranching Methods: Some Results and Implications -- Defining a Tranche -- The Mathematics of Tranching -- PD-based Tranching -- EL-based Tranching -- The EL of a Tranche Necessarily Increases When Either the Attachment Point or the Detachment Point is Decreased -- Upper Bound on Tranche Expected LGD (LGDt) Assumption Given EL-based Tranches -- Skipping of Some Tranches in the EL-based Approach -- Global Structured Finance Rating -- Asset-Backed Securities -- The ABS Structure for the Experiment -- Cash Flow Modeling -- Modeling and Simulating Defaults -- Expected Loss Rating -- Global Sensitivity Analysis -- Elementary Effects -- Variance-based Method -- Global Sensitivity Analysis Results -- Uncertainty Analysis -- Sensitivity Analysis -- Global Rating -- PART IV CREDIT DERIVATIVES -- Analytic Dynamic Factor Copula Model -- Pricing Equations -- One-factor Copula Model -- Multi-period Factor Copula Models -- Calibration -- Dynamic Modeling of Credit Derivatives -- General Model Choice -- Modeling Option Prices -- Modeling Credit Risk -- Portfolio Credit Derivatives -- Modeling Asset Dynamics -- The Market Model -- The Asset-value Model -- Empirical Analysis -- Elementary Data -- Implied Dividends -- Market Dynamics -- Asset Value Model -- Tranche Pricing -- Out-of-time Application -- Pricing and Calibration in Market Models -- Basic notions -- The model -- Modeling Assumptions -- Absence of Arbitrage -- An affine specification -- Pricing -- Calibration -- Calibration Procedure -- Calibration Results -- Appendix A: Computations -- Counterparty Credit Risk and Clearing of Derivatives -- From the Perspective of an Industrial Corporate with a Focus on Commodity Markets -- Credit exposures in commodity business -- Settlement Exposure -- Performance Exposure -- Example of Fixed Price Deal with Performance Exposure -- Example of a Floating Price Deal with Performance Exposure -- General Remarks on Credit Exposure Concepts -- Ex Ante exposure-reducing techniques -- Payment Terms -- Material Adverse Change Clauses -- Master Agreements -- Netting -- Margining -- Close Out Exposure and Threshold -- Ex Ante risk-reducing techniques -- Credit Enhancements in General -- Parent Company Guarantees -- Letters of Credit -- Credit Insurance -- Clearing via a Central Counterparty -- Ex Post risk-reducing techniques -- Factoring -- Novation -- Risk-reducing Trades -- Hedging with CDS -- Hedging with Contingent-CDS -- Hedging with Puts on Equity -- Ex Post work out considerations -- Practical credit risk management and pricing Peculiarities of commodity markets -- Peculiarities of commodity related credit portfolios -- Credit Risk Capital for a commodity related portfolio measured with an extension of CreditMetrics -- CreditRisk+ study: applied to a commodity related credit portfolio -- CDS Industrial Sector Indices, Credit and Liquidity Risk -- The Data -- Methodology and Results -- Preliminary Analysis -- Common Factor Analysis -- Stability of Relations -- Risk Transfer and Pricing of Illiquid Assets with Loan CDS -- Shipping Market -- Loan Credit Default Swaps -- LCDS Pricing -- Modeling LCDS Under the Intensity-based Model -- Valuation Framework for LCDS -- The Structural Approach -- Credit Risk in Shipping Loans -- Valuation of LCDS on Shipping Loans -- Simulation Model -- Numerical Results -- Appendix A: Monte Carlo Parameterization PART V REGULATION -- Regulatory Capital Requirements for Securitizations -- Regulatory Approaches for Securitizations -- Ratings Based Approach (RBA) -- Supervisory Formula Approach (SFA) -- Standardized Approach (SA) -- Post-crisis Revisions to the Basel Framework -- Regulating OTC Derivatives -- The Wall Street Transparency and Accountability Part of the Dodd-Frank Act of 2010 -- Which Derivatives Will Be Affected? …”
Full text (MFA users only)
Electronic eBook -
347
Advanced wireless communications & Internet : future evolving technologies
Published 2011Table of Contents: “…Glisic -- 11.1 Introduction 585 -- 11.2 Background and Related Work 586 -- 11.3 Cooperative Communications 593 -- 11.4 Relay-Assisted Communications 616 -- 11.5 Two-Way Relay-Assisted Communications 646 -- 11.6 Relay-Assisted Communications With Reuse of Resources 651 -- Appendices 668 -- 12 Biologically Inspired Paradigms inWireless Networks 683 -- 12.1 Biologically Inspired Model for Securing Hybrid Mobile Ad Hoc Networks 683 -- 12.2 Biologically Inspired Routing in Ad Hoc Networks 687 -- 12.3 Analytical Modeling of AntNet as Adaptive Mobile Agent Based Routing 691 -- 12.4 Biologically Inspired Algorithm for Optimum Multicasting 697 -- 12.5 Biologically Inspired (BI) Distributed Topology Control 703 -- 12.6 Optimization of Mobile Agent Routing in Sensor Networks 708 -- 12.7 Epidemic Routing 710 -- 12.8 Nano-Networks 715 -- 12.9 Genetic Algorithm Based Dynamic Topology Reconfiguration in Cellular Multihop Wireless Networks 718 -- References 739 -- 13 Positioning in Wireless Networks 743 -- 13.1 Mobile Station Location in Cellular Networks 743.…”
Full text (MFA users only)
Electronic eBook -
348
Fog and fogonomics : challenges and practices of fog computing, communication, networking, strategy, and economics
Published 2020Table of Contents: “…5.5.2 Survivability, Availability, and Reliability 122 -- 5.6 Sovereignty, Privacy, Security, Interoperability, and Management 123 -- 5.6.1 Data Sovereignty 123 -- 5.6.2 Privacy and Security 123 -- 5.6.3 Heterogeneity and Interoperability 124 -- 5.6.4 Monitoring, Orchestration, and Management 124 -- 5.7 Trade-Offs 125 -- 5.8 Conclusion 126 -- References 126 -- 6 Incentive Schemes for User-Provided Fog Infrastructure 129 /George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas -- 6.1 Introduction 129 -- 6.2 Technology and Economic Issues in UPIs 132 -- 6.2.1 Overview of UPI models for Network Connectivity 132 -- 6.2.2 Technical Challenges of Resource Allocation 134 -- 6.2.3 Incentive Issues 135 -- 6.3 Incentive Mechanisms for Autonomous Mobile UPIs 137 -- 6.4 Incentive Mechanisms for Provider-assisted Mobile UPIs 140 -- 6.5 Incentive Mechanisms for Large-Scale Systems 143 -- 6.6 Open Challenges in Mobile UPI Incentive Mechanisms 145 -- 6.6.1 Autonomous Mobile UPIs 145 -- 6.6.1.1 Consensus of the Service Provider 145 -- 6.6.1.2 Dynamic Setting 146 -- 6.6.2 Provider-assisted Mobile UPIs 146 -- 6.6.2.1 Modeling the Users 146 -- 6.6.2.2 Incomplete Market Information 147 -- 6.7 Conclusions 147 -- References 148 -- 7 Fog-Based Service Enablement Architecture 151 /Nanxi Chen, Siobhán Clarke, and Shu Chen -- 7.1 Introduction 151 -- 7.1.1 Objectives and Challenges 152 -- 7.2 Ongoing Effort on FogSEA 153 -- 7.2.1 FogSEA Service Description 156 -- 7.2.2 Semantic Data Dependency Overlay Network 158 -- 7.2.2.1 Creation and Maintenance 159 -- 7.2.2.2 Semantic-Based Service Matchmarking 161 -- 7.3 Early Results 164 -- 7.3.1 Service Composition 165 -- 7.3.1.1 SeDDON Creation in FogSEA 167 -- 7.3.2 Related Work 168 -- 7.3.2.1 Semantic-Based Service Overlays 169 -- 7.3.2.2 Goal-Driven Planning 170 -- 7.3.2.3 Service Discovery 171 -- 7.3.3 Open Issue and Future Work 172 -- References 174 -- 8 Software-Defined Fog Orchestration for IoT Services 179 /Renyu Yang, Zhenyu Wen, David McKee, Tao Lin, Jie Xu, and Peter Garraghan.…”
Full text (MFA users only)
Electronic eBook -
349
-
350
Acoustic emission and durability of composite materials
Published 2018Full text (MFA users only)
Electronic eBook -
351
Nano-Biomedical Engineering 2009 : Proceedings of the Tohoku University Global Centre of Excellence Programme Global Nano-Biomedical Engineering Education and Research Network Cent...
Published 2009Table of Contents: “…Development of the various kinds of artificial organs and clinical application of the new diagnosis tool / Tomoyuki Yambe. …”
Full text (MFA users only)
Electronic eBook -
352
-
353
Artificial intelligence and data mining approaches in security frameworks
Published 2021Table of Contents: “…87 -- 5.1.2 Purpose of Spamming 88 -- 5.1.3 Spam Filters Inputs and Outputs 88 -- 5.2 Content-Based Spam Filtering Techniques 89 -- 5.2.1 Previous Likeness–Based Filters 89 -- 5.2.2 Case-Based Reasoning Filters 89 -- 5.2.3 Ontology-Based E-Mail Filters 90 -- 5.2.4 Machine-Learning Models 90 -- 5.2.4.1 Supervised Learning 90 -- 5.2.4.2 Unsupervised Learning 90 -- 5.2.4.3 Reinforcement Learning 91 -- 5.3 Machine Learning–Based Filtering 91 -- 5.3.1 Linear Classifiers 91 -- 5.3.2 Naïve Bayes Filtering 92 -- 5.3.3 Support Vector Machines 94 -- 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 94 -- 5.4 Performance Analysis 97 -- 5.5 Conclusion 97 -- References 98 -- 6 Artificial Intelligence in the Cyber Security Environment 101 Jaya Jain -- 6.1 Introduction 102 -- 6.2 Digital Protection and Security Correspondences Arrangements 104 -- 6.2.1 Operation Safety and Event Response 105 -- 6.2.2 AI2 105 -- 6.2.2.1 CylanceProtect 105 -- 6.3 Black Tracking 106 -- 6.3.1 Web Security 107 -- 6.3.1.1 Amazon Macie 108 -- 6.4 Spark Cognition Deep Military 110 -- 6.5 The Process of Detecting Threats 111 -- 6.6 Vectra Cognito Networks 112 -- 6.7 Conclusion 115 -- References 115 -- 7 Privacy in Multi-Tenancy Frameworks Using AI 119 Shweta Solanki -- 7.1 Introduction 119 -- 7.2 Framework of Multi-Tenancy 120 -- 7.3 Privacy and Security in Multi-Tenant Base System Using AI 122 -- 7.4 Related Work 125 -- 7.5 Conclusion 125 -- References 126 -- 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 129 Shubhi Srivastava, Ankit Kumar and Shiv Prakash -- 8.1 Introduction 129 -- 8.1.1 Biometric 131 -- 8.1.2 Categories of Biometric 131 -- 8.1.2.1 Advantages of Biometric 132 -- 8.1.3 Significance and Scope 132 -- 8.1.4 Biometric Face Recognition 132 -- 8.1.5 Related Work 136 -- 8.1.6 Main Contribution 136 -- 8.1.7 Novelty Discussion 137 -- 8.2 The Proposed Methodolgy 139 -- 8.2.1 Face Detection Using Haar Algorithm 139 -- 8.2.2 Feature Extraction Using ILBP 141 -- 8.2.3 Dataset 143 -- 8.2.4 Classification Using SVM 143 -- 8.3 Experimental Results 145 -- 8.3.1 Face Detection 146 -- 8.3.2 Feature Extraction 146 -- 8.3.3 Recognize Face Image 147 -- 8.4 Conclusion 151 -- References 152 -- 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using ANN and IoT 155 S K Rajesh Kanna, O. …”
Full text (MFA users only)
Electronic eBook -
354
-
355
Tracking with particle filter for high-dimensional observation and state spaces
Published 2015Full text (MFA users only)
Electronic eBook -
356
Language processing and grammars : the role of functionally oriented computational models
Published 2014Full text (MFA users only)
Electronic eBook -
357
Understanding smart sensors
Published 2013Table of Contents: “…ZigBee-Like Wireless -- 8.3.3. ANT+ -- 8.3.4.6LoWPAN -- 8.3.5. Near Field Communication (NFC) -- 8.3.6.Z-Wave -- 8.3.7. …”
Full text (MFA users only)
Electronic eBook -
358
-
359
Software engineering for embedded systems : methods, practical techniques, and applications
Published 2013Table of Contents: “…-- What limits software reuse? -- Kinds of software reuse -- Implementing reuse by layers -- Going to the next level -- Introducing the component factory -- Factory hardware configuration -- Factory software configuration -- How the factory aids reusability -- RTOS agnosticism -- Arbitrary extensibility -- Conclusion -- References -- Example: latency vs. throughput in an eNodeB application -- Performance patterns and anti-patterns -- References -- The code optimization process -- Using the development tools -- Compiler optimization -- Basic compiler configuration -- Enabling optimizations -- Additional optimization configurations -- Using the profiler -- Background -- understanding the embedded architecture -- Resources -- Basic C optimization techniques -- Choosing the right data types -- Functions calling conventions -- Pointers and memory access -- Restrict and pointer aliasing -- Loops -- Additional tips and tricks -- General loop transformations -- Loop unrolling -- Multisampling -- Partial summation -- Software pipelining -- Example application of optimization techniques: cross-correlation -- Setup -- Original implementation -- Step 1: use intrinsics for fractional operations and specify loop counts -- Step 2: specify data alignment and modify for multisampling algorithm -- Step 3: assembly-language optimization -- Introduction -- Code size optimizations -- Compiler flags and flag mining -- Target ISA for size and performance tradeoffs -- Tuning the ABI for code size -- Caveat emptor: compiler optimization orthogonal to code size! …”
Full text (MFA users only)
Electronic eBook -
360
Big data : concepts, technology and architecture
Published 2021Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
Full text (MFA users only)
Electronic eBook