Search Results - (((((((ant OR manthe) OR wind) OR mwantic) OR cantor) OR anne) OR halted) OR granting) algorithms.
Suggested Topics within your search.
Suggested Topics within your search.
- Artificial intelligence 23
- Mathematical optimization 16
- Mathematics 15
- artificial intelligence 14
- Data processing 11
- Mathematical models 11
- Machine learning 9
- Technological innovations 9
- Artificial Intelligence 8
- Design and construction 8
- Neural networks (Computer science) 8
- Data mining 7
- Electric power systems 7
- Manufacturing processes 7
- Mechatronics 7
- algorithms 7
- Algorithms 6
- Information technology 6
- Research 6
- Renewable energy sources 5
- Social aspects 5
- Swarm intelligence 5
- Automatic control 4
- Bioinformatics 4
- Mechanical engineering 4
- Neural Networks, Computer 4
- Automation 3
- Biology 3
- Computational Biology 3
- Computational biology 3
Search alternatives:
- mwantic »
-
221
Nonlinear science and complexity
Published 2007Table of Contents: “…Bruzón -- Applying a new algorithm to derive nonclassical symmetries / M.S. …”
Full text (MFA users only)
Electronic Conference Proceeding eBook -
222
-
223
Handbook of safety principles
Published 2018Table of Contents: “…Success or Failure / Ann Enander -- 30.8. Relations to Other Safety Principles / Ann Enander -- References / Ann Enander -- Further Reading / Ann Enander -- 31. …”
Full text (MFA users only)
Electronic eBook -
224
Decision Intelligence for Dummies
Published 2022Table of Contents: “…Preventing Wrong Influences from Affecting Decisions -- Bad influences in AI and analytics -- The blame game -- Ugly politics and happy influencers -- Risk Factors in Decision Intelligence -- DI and Hyperautomation -- Part 5 The Part of Tens -- Chapter 17 Ten Steps to Setting Up a Smart Decision -- Check Your Data Source -- Track Your Data Lineage -- Know Your Tools -- Use Automated Visualizations -- Impact = Decision -- Do Reality Checks -- Limit Your Assumptions -- Think Like a Science Teacher -- Solve for Missing Data -- Partial versus incomplete data -- Clues and missing answers -- Take Two Perspectives and Call Me in the Morning -- Chapter 18 Bias In, Bias Out (and Other Pitfalls) -- A Pitfalls Overview -- Relying on Racist Algorithms -- Following a Flawed Model for Repeat Offenders -- Using A Sexist Hiring Algorithm -- Redlining Loans -- Leaning on Irrelevant Information -- Falling Victim to Framing Foibles -- Being Overconfident -- Lulled by Percentages -- Dismissing with Prejudice -- Index -- EULA.…”
Full text (MFA users only)
Electronic eBook -
225
-
226
Artificial intelligence and data mining approaches in security frameworks
Published 2021Table of Contents: “…87 -- 5.1.2 Purpose of Spamming 88 -- 5.1.3 Spam Filters Inputs and Outputs 88 -- 5.2 Content-Based Spam Filtering Techniques 89 -- 5.2.1 Previous Likeness–Based Filters 89 -- 5.2.2 Case-Based Reasoning Filters 89 -- 5.2.3 Ontology-Based E-Mail Filters 90 -- 5.2.4 Machine-Learning Models 90 -- 5.2.4.1 Supervised Learning 90 -- 5.2.4.2 Unsupervised Learning 90 -- 5.2.4.3 Reinforcement Learning 91 -- 5.3 Machine Learning–Based Filtering 91 -- 5.3.1 Linear Classifiers 91 -- 5.3.2 Naïve Bayes Filtering 92 -- 5.3.3 Support Vector Machines 94 -- 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 94 -- 5.4 Performance Analysis 97 -- 5.5 Conclusion 97 -- References 98 -- 6 Artificial Intelligence in the Cyber Security Environment 101 Jaya Jain -- 6.1 Introduction 102 -- 6.2 Digital Protection and Security Correspondences Arrangements 104 -- 6.2.1 Operation Safety and Event Response 105 -- 6.2.2 AI2 105 -- 6.2.2.1 CylanceProtect 105 -- 6.3 Black Tracking 106 -- 6.3.1 Web Security 107 -- 6.3.1.1 Amazon Macie 108 -- 6.4 Spark Cognition Deep Military 110 -- 6.5 The Process of Detecting Threats 111 -- 6.6 Vectra Cognito Networks 112 -- 6.7 Conclusion 115 -- References 115 -- 7 Privacy in Multi-Tenancy Frameworks Using AI 119 Shweta Solanki -- 7.1 Introduction 119 -- 7.2 Framework of Multi-Tenancy 120 -- 7.3 Privacy and Security in Multi-Tenant Base System Using AI 122 -- 7.4 Related Work 125 -- 7.5 Conclusion 125 -- References 126 -- 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 129 Shubhi Srivastava, Ankit Kumar and Shiv Prakash -- 8.1 Introduction 129 -- 8.1.1 Biometric 131 -- 8.1.2 Categories of Biometric 131 -- 8.1.2.1 Advantages of Biometric 132 -- 8.1.3 Significance and Scope 132 -- 8.1.4 Biometric Face Recognition 132 -- 8.1.5 Related Work 136 -- 8.1.6 Main Contribution 136 -- 8.1.7 Novelty Discussion 137 -- 8.2 The Proposed Methodolgy 139 -- 8.2.1 Face Detection Using Haar Algorithm 139 -- 8.2.2 Feature Extraction Using ILBP 141 -- 8.2.3 Dataset 143 -- 8.2.4 Classification Using SVM 143 -- 8.3 Experimental Results 145 -- 8.3.1 Face Detection 146 -- 8.3.2 Feature Extraction 146 -- 8.3.3 Recognize Face Image 147 -- 8.4 Conclusion 151 -- References 152 -- 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using ANN and IoT 155 S K Rajesh Kanna, O. …”
Full text (MFA users only)
Electronic eBook -
227
Ecological modelling for sustainable development
Published 2013Table of Contents: “…Ismail -- Modelling of Climatological Wind-Driven Circulation and Thermohaline Structures of Peninsular Malaysia's Eastern Continental Shelf using Princeton Ocean Model-Halimatun Muhamad , Fredolin T. …”
Full text (MFA users only)
Electronic eBook -
228
Aerospace Sensors.
Published 2012Table of Contents: “…Principles and examples of sensor integration -- 9.1 Sensor systems -- 9.1.1 The sensor system concept -- 9.1.2 Joint processing of readings from identical sensors -- 9.1.3 Joint processing of readings from cognate sensors with different measurement ranges -- 9.1.4 Joint processing of diverse sensors readings -- 9.1.5 Linear and nonlinear sensor integration algorithms -- 9.2 Fundamentals of integrated measuring system synthesis -- 9.2.1 Synthesis problem statement -- 9.2.2 Classes of dynamic system realization -- 9.2.3 Measurement accuracy indices -- 9.2.4 Excitation properties -- 9.2.5 Objective functions for robust system optimisation -- 9.2.6 Methods of dynamic system accuracy index analysis under excitation with given numerical characteristics of derivatives -- 9.2.6.1 Estimation of error variance -- 9.2.6.2 Example of error variance analysis -- 9.2.6.3 Use of equivalent harmonic excitation -- 9.2.6.4 Estimation of error maximal value -- 9.2.7 System optimization under maximum accuracy criteria -- 9.2.8 Procedures for the dimensional reduction of a measuring system -- 9.2.8.1 Determination of an optimal set of sensors -- 9.2.8.2 Analysis of the advantages of invariant system construction -- 9.2.8.3 Advantages of the zeroing of several system parameters -- 9.2.9 Realization and simulation of integration algorithms -- 9.3 Examples of two-component integrated navigation systems -- 9.3.1 Noninvariant robust integrated speed meter -- 9.3.2 Integrated radio-inertial measurement -- 9.3.3 Airborne gravimeter integration -- 9.3.4 The orbital verticant -- References…”
Full text (MFA users only)
Electronic eBook -
229
Mobile magic : the saatchi and saatchi guide to mobile marketing and design
Published 2014Full text (MFA users only)
Electronic eBook -
230
-
231
Understanding smart sensors
Published 2013Table of Contents: “…ZigBee-Like Wireless -- 8.3.3. ANT+ -- 8.3.4.6LoWPAN -- 8.3.5. Near Field Communication (NFC) -- 8.3.6.Z-Wave -- 8.3.7. …”
Full text (MFA users only)
Electronic eBook -
232
Unmanned aircraft systems
Published 2016Table of Contents: “…Unmanned Aircraft Systems -- Contents -- Contributors -- Foreword -- Preface -- Part 1: Introductory -- Chapter 1: UAS Uses, Capabilities, Grand Challenges -- 1 Introduction -- 2 Uses -- Missions and Applications -- 2.1 Early evolution -- 2.2 Dull, dirty, and dangerous -- 2.3 Emergence of civil and commercial applications -- 3 Emerging Capabilities And A Look Ahead -- 3.1 Expanding the design space and operational envelope -- 3.2 Autonomy -- 4 Grand Challenges Ahead -- 4.1 Access to the airspace -- 4.2 The quest for trust -- 4.3 Integration -- 5 Summary -- References -- Part 2: Missions -- Chapter 2: Remote Sensing Methodology for Unmanned Aerial Systems -- 1 Introduction -- 2 UAS Remote Sensing Methodology -- 3 Core Concepts in UAS Remote Sensing Applications -- 3.1 Detection/Counting Applications -- 3.2 Identification/Localization Applications -- 3.3 Analysis Applications -- 4 UAS Imaging Equipment -- 4.1 Video Systems -- 4.2 Digital Cameras -- 4.3 Calibrated Digital Imagers -- 4.3.1 Digital Cameras as Calibrated Imagers -- 4.3.2 Multispectral and Hyperspectral Imagers -- 4.3.3 Spectral Sensitivity -- 5 Conclusion -- References -- Chapter 3: Autonomous Parachute-Based Precision Delivery Systems -- 1 Introduction -- 2 Concept of Operations and Key Requirements -- 3 Pads Family and Steady-State Performance -- 4 Modeling -- 4.1 Governing equations -- 4.2 Apparent mass and inertia -- 4.3 PADS aerodynamics -- 4.4 Effect of the control inputs -- 4.5 Linearized models and stability -- 5 Pads Gnc -- 5.1 Maneuver-based guidance -- 5.2 Accounting for the variable winds -- 5.3 Optimal precision placement guidance -- 6 Other Developments -- 6.1 Glide slope angle control -- 6.2 Reduced cost PADS -- 7 Conclusion -- References -- Chapter 4: Networked Multiple UAS -- 1 Introduction -- 2 Principles of Radio Links -- 3 Air-to-Ground Communications.…”
Full text (MFA users only)
Electronic eBook -
233
Visual Inspection Technology in the Hard Disc Drive Industry.
Published 2015Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
Full text (MFA users only)
Electronic eBook -
234
Fundamentals of Fluid Power Control.
Published 2009Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
Full text (MFA users only)
Electronic eBook -
235