Search Results - (((((((ant OR wants) OR semantic) OR kind) OR cantor) OR anne) OR planet) OR hints) algorithms.
Suggested Topics within your search.
Suggested Topics within your search.
- Artificial intelligence 43
- Data processing 36
- Machine learning 28
- Mathematics 25
- Data mining 24
- Mathematical models 23
- artificial intelligence 22
- Algorithms 19
- Mathematical optimization 18
- algorithms 17
- Artificial Intelligence 15
- Computer science 14
- Data Mining 13
- Information technology 13
- Neural networks (Computer science) 13
- Python (Computer program language) 13
- Computer networks 12
- Technological innovations 12
- Electronic data processing 10
- Social aspects 10
- methods 10
- Computer algorithms 9
- Machine Learning 9
- Application software 8
- Big data 8
- Computational linguistics 8
- Computer security 8
- Computer simulation 8
- Development 8
- Neural Networks, Computer 8
Search alternatives:
- ant »
- wants »
- semantic »
- cantor »
- kind »
-
461
Millimeter-wave digitally intensive frequency generation in CMOS
Published 2015Full text (MFA users only)
Electronic eBook -
462
Listed Volatility and Variance Derivatives : a Python-based Guide.
Published 2016Full text (MFA users only)
Electronic eBook -
463
Big data : concepts, technology and architecture
Published 2021Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
Full text (MFA users only)
Electronic eBook -
464
Engineering autonomous vehicles and robots : the DragonFly modular-based approach
Published 2020Full text (MFA users only)
Electronic eBook -
465
Visual Inspection Technology in the Hard Disc Drive Industry.
Published 2015Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
Full text (MFA users only)
Electronic eBook -
466
-
467
Fundamentals of Fluid Power Control.
Published 2009Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
Full text (MFA users only)
Electronic eBook -
468
-
469
IBM TotalStorage : SAN product, design, and optimization guide
Published 2005Table of Contents: “…SAN design considerations -- 6.1 What do you want to achieve with a SAN? -- 6.1.1 Storage consolidation -- 6.1.2 High availability solutions -- 6.1.3 LAN-free backup -- 6.1.4 Server-free backup -- 6.1.5 Server-less backup -- 6.1.6 Disaster recovery -- 6.1.7 Flexibility -- 6.1.8 Goals -- 6.1.9 Benefits expected -- 6.1.10 TCO/ROI -- 6.1.11 Investment protection -- 6.2 Existing resources needs and planned growth -- 6.2.1 Collecting the data about existing resources -- 6.2.2 Planning for future needs -- 6.2.3 Platforms and storage -- 6.3 Select the core design for your environment -- 6.3.1 Selecting the topology -- 6.3.2 Scalability -- 6.3.3 Performance -- 6.3.4 Redundancy and resiliency -- 6.4 Host connectivity and Host Bus Adapters -- 6.4.1 Selection criteria -- 6.4.2 Multipathing software -- 6.4.3 Storage sizing -- 6.4.4 Management software -- 6.5 Director class or switch technology -- 6.6 General considerations -- 6.6.1 Ports and ASICs -- 6.6.2 Class F.…”
Full text (MFA users only)
Electronic eBook -
470
Analyzing neural time series data : theory and practice
Published 2014Table of Contents: “…32.7. What Kinds of Statistics Should Be Applied? -- 32.8. How to Combine Data across Subjects -- 33. …”
Full text (MFA users only)
Electronic eBook -
471
-
472
The next economic disaster : why it's coming and how to avoid it
Published 2014Full text (MFA users only)
Electronic eBook -
473
Statistical learning from a regression perspective
Published 2008Full text (MFA users only)
Electronic eBook -
474
Fuzzy Multiple Attribute Decision Making : Methods and Applications
Published 1992Full text (MFA users only)
Electronic eBook -
475
-
476
Disobedient Aesthetics : Surveillance, Bodies, Control
Published 2024Full text (MFA users only)
Electronic eBook -
477
-
478
Statistical analysis in forensic science : evidential value of multivariate physicochemical data
Published 2014Full text (MFA users only)
Electronic eBook