Search Results - (((((((ant OR wantsa) OR ken) OR wkante) OR cantor) OR anne) OR warter) OR wantsa) algorithms.
Suggested Topics within your search.
Suggested Topics within your search.
- Artificial intelligence 18
- Mathematical optimization 15
- artificial intelligence 12
- Mathematics 11
- Data processing 10
- Neural networks (Computer science) 8
- Artificial Intelligence 7
- Machine learning 7
- Mathematical models 7
- Algorithms 5
- Data mining 5
- Design and construction 5
- Information technology 5
- Swarm intelligence 5
- algorithms 5
- Neural Networks, Computer 4
- Social aspects 4
- Technological innovations 4
- Bioinformatics 3
- Computational Biology 3
- Computational biology 3
- Computer programming 3
- Electric power systems 3
- Intelligent agents (Computer software) 3
- Machine Learning 3
- Mechatronics 3
- Philosophy 3
- Robotics 3
- Soft computing 3
- Agriculture 2
Search alternatives:
- ant »
- wantsa »
- wkante »
- cantor »
- warter »
-
121
A Primer on Machine Learning Applications in Civil Engineering
Published 2019Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
Full text (MFA users only)
Electronic eBook -
122
Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications
Published 2012Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
Full text (MFA users only)
Electronic eBook -
123
Pediatric incontinence : evaluation and clinical management
Published 2015Full text (MFA users only)
Electronic eBook -
124
Knowledge mining using intelligent agents
Published 2011Full text (MFA users only)
Electronic eBook -
125
Digitalization of Society and Socio-Political Issues. 1, Digital, Communication, and Culture
Published 2019Table of Contents: “…The Digitalization of Cultural Policies in France 149; Anne BELLON 14.1.…”
Full text (MFA users only)
Electronic eBook -
126
Machine Learning in Chemical Safety and Health : Fundamentals with Applications.
Published 2022Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
Full text (MFA users only)
Electronic eBook -
127
Computational models of argument : Proceedings of COMMA 2012
Published 2012Table of Contents: “…Simari -- Automated Deployment of Argumentation Protocols / Michael Rovatsos -- On Preferred Extension Enumeration in Abstract Argumentation / Katie Atkinson -- Towards Experimental Algorithms for Abstract Argumentation / Katie Atkinson.…”
Full text (MFA users only)
Electronic Conference Proceeding eBook -
128
Stochastic filtering with applications in finance
Published 2010Table of Contents: “…Economic convergence in a filtering framework. 3.3. Ex-ante equity risk premium. 3.4. Concluding remarks -- 4. …”
Full text (MFA users only)
Electronic eBook -
129
Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization
Published 2019Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
Full text (MFA users only)
Electronic eBook -
130
Credit securitizations and derivatives : challenges for the global markets
Published 2013Table of Contents: “…Market Credit Risk Pricing -- Regulation -- Developments in Structured Finance Markets -- Impairments of Asset-Backed Securities and Outstanding Ratings -- Issuance of Asset-backed Securities and Outstanding Volume -- Global CDO Issuance and Outstanding Volume -- PART II CREDIT PORTFOLIO RISK MEASUREMENT -- Mortgage Credit Risk -- Five C's of Credit and Mortgage Credit Risk -- Determinants of Mortgage Default, Loss Given Default and Exposure at Default -- Determinants of Mortgage Default -- Determinants of Mortgage LGD -- Determinants of Mortgage EAD -- Modeling Methods for Default, LGD and EAD -- Model Risk Management -- Credit Portfolio Correlations and Uncertainty -- Introduction -- Gaussian and Semi-Gaussian Single Risk Factor Model -- Individual and Simultaneous Confidence Bounds and Intervals -- Confidence Intervals for Asset Correlations -- Confidence Intervals for Default and Survival Time Correlations -- Confidence Intervals for Default Correlations -- Confidence Intervals for Survival Time Correlations -- Credit Portfolio Correlations with Dynamic Leverage Ratios -- The Hui et al. (2007) Model -- The Method of Images for Constant Coefficients -- The Method of Images for Time-Varying Coefficients -- Modelling Default Correlations in a Two-Firm Model -- Default Correlations -- A Two-Firm Model with Dynamic Leverage Ratios -- Method of Images for Constant Coefficients -- Method of Images for Time-Varying Coefficients -- Alternative Methodologies for General Values -- Numerical Results -- Accuracy -- The Impact of Correlation between Two Firms -- The Impact of Different Credit Quality Paired Firms -- The Impact of Volatilities -- The Impact of Drift Levels -- The Impact of Initial Value of Leverage Ratio Levels -- Impact of Correlation between Firms and Interest Rates -- The Price of Credit-Linked Notes -- A Hierarchical Model of Tail-Dependent Asset Returns -- The Variance Compound Gamma Model -- Multivariate Process for Logarithmic Asset Returns -- Dependence Structure -- Sampling -- Copula Properties -- An Application Example -- Portfolio Setup -- Test Portfolios -- Parameter Setup -- Simulation Results -- Importance Sampling Algorithm -- Conclusions -- Appendix A: The VCG Probability Distribution Function Appendix B: HAC Representation for the VCG Framework -- Monte Carlo Methods for Portfolio Credit Risk -- Modeling Credit Portfolio Losses -- Risk Measures -- Modeling Dependency -- Estimating Risk Measures via Monte Carlo -- Crude Monte Carlo Estimators -- Importance Sampling -- Specific Models -- The Bernoulli Mixture Model -- Factor Models -- Copula Models -- Intensity Models -- An Example Point Process Model -- Appendix A: A Primer on Rare-event Simulation -- Efficiency -- Importance Sampling -- The Choice of g -- Adaptive Importance Sampling -- Importance Sampling for Stochastic Processes -- Credit Portfolio Risk and Diversification -- Introduction -- Model Setup -- Independent Asset Values -- Correlated Asset Values -- Large Portfolio Limit -- Correlated Diffusion -- Correlated GARCH Process -- Applications of the Structural Recovery Rate -- Conclusions -- PART III CREDIT PORTFOLIO RISK SECURITIZATION AND TRANCHING -- Differences in Tranching Methods: Some Results and Implications -- Defining a Tranche -- The Mathematics of Tranching -- PD-based Tranching -- EL-based Tranching -- The EL of a Tranche Necessarily Increases When Either the Attachment Point or the Detachment Point is Decreased -- Upper Bound on Tranche Expected LGD (LGDt) Assumption Given EL-based Tranches -- Skipping of Some Tranches in the EL-based Approach -- Global Structured Finance Rating -- Asset-Backed Securities -- The ABS Structure for the Experiment -- Cash Flow Modeling -- Modeling and Simulating Defaults -- Expected Loss Rating -- Global Sensitivity Analysis -- Elementary Effects -- Variance-based Method -- Global Sensitivity Analysis Results -- Uncertainty Analysis -- Sensitivity Analysis -- Global Rating -- PART IV CREDIT DERIVATIVES -- Analytic Dynamic Factor Copula Model -- Pricing Equations -- One-factor Copula Model -- Multi-period Factor Copula Models -- Calibration -- Dynamic Modeling of Credit Derivatives -- General Model Choice -- Modeling Option Prices -- Modeling Credit Risk -- Portfolio Credit Derivatives -- Modeling Asset Dynamics -- The Market Model -- The Asset-value Model -- Empirical Analysis -- Elementary Data -- Implied Dividends -- Market Dynamics -- Asset Value Model -- Tranche Pricing -- Out-of-time Application -- Pricing and Calibration in Market Models -- Basic notions -- The model -- Modeling Assumptions -- Absence of Arbitrage -- An affine specification -- Pricing -- Calibration -- Calibration Procedure -- Calibration Results -- Appendix A: Computations -- Counterparty Credit Risk and Clearing of Derivatives -- From the Perspective of an Industrial Corporate with a Focus on Commodity Markets -- Credit exposures in commodity business -- Settlement Exposure -- Performance Exposure -- Example of Fixed Price Deal with Performance Exposure -- Example of a Floating Price Deal with Performance Exposure -- General Remarks on Credit Exposure Concepts -- Ex Ante exposure-reducing techniques -- Payment Terms -- Material Adverse Change Clauses -- Master Agreements -- Netting -- Margining -- Close Out Exposure and Threshold -- Ex Ante risk-reducing techniques -- Credit Enhancements in General -- Parent Company Guarantees -- Letters of Credit -- Credit Insurance -- Clearing via a Central Counterparty -- Ex Post risk-reducing techniques -- Factoring -- Novation -- Risk-reducing Trades -- Hedging with CDS -- Hedging with Contingent-CDS -- Hedging with Puts on Equity -- Ex Post work out considerations -- Practical credit risk management and pricing Peculiarities of commodity markets -- Peculiarities of commodity related credit portfolios -- Credit Risk Capital for a commodity related portfolio measured with an extension of CreditMetrics -- CreditRisk+ study: applied to a commodity related credit portfolio -- CDS Industrial Sector Indices, Credit and Liquidity Risk -- The Data -- Methodology and Results -- Preliminary Analysis -- Common Factor Analysis -- Stability of Relations -- Risk Transfer and Pricing of Illiquid Assets with Loan CDS -- Shipping Market -- Loan Credit Default Swaps -- LCDS Pricing -- Modeling LCDS Under the Intensity-based Model -- Valuation Framework for LCDS -- The Structural Approach -- Credit Risk in Shipping Loans -- Valuation of LCDS on Shipping Loans -- Simulation Model -- Numerical Results -- Appendix A: Monte Carlo Parameterization PART V REGULATION -- Regulatory Capital Requirements for Securitizations -- Regulatory Approaches for Securitizations -- Ratings Based Approach (RBA) -- Supervisory Formula Approach (SFA) -- Standardized Approach (SA) -- Post-crisis Revisions to the Basel Framework -- Regulating OTC Derivatives -- The Wall Street Transparency and Accountability Part of the Dodd-Frank Act of 2010 -- Which Derivatives Will Be Affected? …”
Full text (MFA users only)
Electronic eBook -
131
Advanced wireless communications & Internet : future evolving technologies
Published 2011Table of Contents: “…Glisic -- 11.1 Introduction 585 -- 11.2 Background and Related Work 586 -- 11.3 Cooperative Communications 593 -- 11.4 Relay-Assisted Communications 616 -- 11.5 Two-Way Relay-Assisted Communications 646 -- 11.6 Relay-Assisted Communications With Reuse of Resources 651 -- Appendices 668 -- 12 Biologically Inspired Paradigms inWireless Networks 683 -- 12.1 Biologically Inspired Model for Securing Hybrid Mobile Ad Hoc Networks 683 -- 12.2 Biologically Inspired Routing in Ad Hoc Networks 687 -- 12.3 Analytical Modeling of AntNet as Adaptive Mobile Agent Based Routing 691 -- 12.4 Biologically Inspired Algorithm for Optimum Multicasting 697 -- 12.5 Biologically Inspired (BI) Distributed Topology Control 703 -- 12.6 Optimization of Mobile Agent Routing in Sensor Networks 708 -- 12.7 Epidemic Routing 710 -- 12.8 Nano-Networks 715 -- 12.9 Genetic Algorithm Based Dynamic Topology Reconfiguration in Cellular Multihop Wireless Networks 718 -- References 739 -- 13 Positioning in Wireless Networks 743 -- 13.1 Mobile Station Location in Cellular Networks 743.…”
Full text (MFA users only)
Electronic eBook -
132
-
133
Handbook of safety principles
Published 2018Table of Contents: “…Success or Failure / Ann Enander -- 30.8. Relations to Other Safety Principles / Ann Enander -- References / Ann Enander -- Further Reading / Ann Enander -- 31. …”
Full text (MFA users only)
Electronic eBook -
134
-
135
Artificial intelligence and data mining approaches in security frameworks
Published 2021Table of Contents: “…87 -- 5.1.2 Purpose of Spamming 88 -- 5.1.3 Spam Filters Inputs and Outputs 88 -- 5.2 Content-Based Spam Filtering Techniques 89 -- 5.2.1 Previous Likeness–Based Filters 89 -- 5.2.2 Case-Based Reasoning Filters 89 -- 5.2.3 Ontology-Based E-Mail Filters 90 -- 5.2.4 Machine-Learning Models 90 -- 5.2.4.1 Supervised Learning 90 -- 5.2.4.2 Unsupervised Learning 90 -- 5.2.4.3 Reinforcement Learning 91 -- 5.3 Machine Learning–Based Filtering 91 -- 5.3.1 Linear Classifiers 91 -- 5.3.2 Naïve Bayes Filtering 92 -- 5.3.3 Support Vector Machines 94 -- 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 94 -- 5.4 Performance Analysis 97 -- 5.5 Conclusion 97 -- References 98 -- 6 Artificial Intelligence in the Cyber Security Environment 101 Jaya Jain -- 6.1 Introduction 102 -- 6.2 Digital Protection and Security Correspondences Arrangements 104 -- 6.2.1 Operation Safety and Event Response 105 -- 6.2.2 AI2 105 -- 6.2.2.1 CylanceProtect 105 -- 6.3 Black Tracking 106 -- 6.3.1 Web Security 107 -- 6.3.1.1 Amazon Macie 108 -- 6.4 Spark Cognition Deep Military 110 -- 6.5 The Process of Detecting Threats 111 -- 6.6 Vectra Cognito Networks 112 -- 6.7 Conclusion 115 -- References 115 -- 7 Privacy in Multi-Tenancy Frameworks Using AI 119 Shweta Solanki -- 7.1 Introduction 119 -- 7.2 Framework of Multi-Tenancy 120 -- 7.3 Privacy and Security in Multi-Tenant Base System Using AI 122 -- 7.4 Related Work 125 -- 7.5 Conclusion 125 -- References 126 -- 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 129 Shubhi Srivastava, Ankit Kumar and Shiv Prakash -- 8.1 Introduction 129 -- 8.1.1 Biometric 131 -- 8.1.2 Categories of Biometric 131 -- 8.1.2.1 Advantages of Biometric 132 -- 8.1.3 Significance and Scope 132 -- 8.1.4 Biometric Face Recognition 132 -- 8.1.5 Related Work 136 -- 8.1.6 Main Contribution 136 -- 8.1.7 Novelty Discussion 137 -- 8.2 The Proposed Methodolgy 139 -- 8.2.1 Face Detection Using Haar Algorithm 139 -- 8.2.2 Feature Extraction Using ILBP 141 -- 8.2.3 Dataset 143 -- 8.2.4 Classification Using SVM 143 -- 8.3 Experimental Results 145 -- 8.3.1 Face Detection 146 -- 8.3.2 Feature Extraction 146 -- 8.3.3 Recognize Face Image 147 -- 8.4 Conclusion 151 -- References 152 -- 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using ANN and IoT 155 S K Rajesh Kanna, O. …”
Full text (MFA users only)
Electronic eBook -
136
Understanding smart sensors
Published 2013Table of Contents: “…ZigBee-Like Wireless -- 8.3.3. ANT+ -- 8.3.4.6LoWPAN -- 8.3.5. Near Field Communication (NFC) -- 8.3.6.Z-Wave -- 8.3.7. …”
Full text (MFA users only)
Electronic eBook -
137
Visual Inspection Technology in the Hard Disc Drive Industry.
Published 2015Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
Full text (MFA users only)
Electronic eBook -
138
Fundamentals of Fluid Power Control.
Published 2009Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
Full text (MFA users only)
Electronic eBook -
139