Search Results - (((((((ant OR win) OR semantic) OR wind) OR cantor) OR anne) OR shape) OR hints) algorithms.

  1. 541

    Designing and Researching of Machines and Technologies for Modern Manufacture.

    Published 2015
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  2. 542

    Danforth's obstetrics and gynecology.

    Published 2008
    Full text (MFA users only)
    Electronic eBook
  3. 543

    Artificial intelligence and data mining approaches in security frameworks

    Published 2021
    Table of Contents: “…87 -- 5.1.2 Purpose of Spamming 88 -- 5.1.3 Spam Filters Inputs and Outputs 88 -- 5.2 Content-Based Spam Filtering Techniques 89 -- 5.2.1 Previous Likeness–Based Filters 89 -- 5.2.2 Case-Based Reasoning Filters 89 -- 5.2.3 Ontology-Based E-Mail Filters 90 -- 5.2.4 Machine-Learning Models 90 -- 5.2.4.1 Supervised Learning 90 -- 5.2.4.2 Unsupervised Learning 90 -- 5.2.4.3 Reinforcement Learning 91 -- 5.3 Machine Learning–Based Filtering 91 -- 5.3.1 Linear Classifiers 91 -- 5.3.2 Naïve Bayes Filtering 92 -- 5.3.3 Support Vector Machines 94 -- 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 94 -- 5.4 Performance Analysis 97 -- 5.5 Conclusion 97 -- References 98 -- 6 Artificial Intelligence in the Cyber Security Environment 101 Jaya Jain -- 6.1 Introduction 102 -- 6.2 Digital Protection and Security Correspondences Arrangements 104 -- 6.2.1 Operation Safety and Event Response 105 -- 6.2.2 AI2 105 -- 6.2.2.1 CylanceProtect 105 -- 6.3 Black Tracking 106 -- 6.3.1 Web Security 107 -- 6.3.1.1 Amazon Macie 108 -- 6.4 Spark Cognition Deep Military 110 -- 6.5 The Process of Detecting Threats 111 -- 6.6 Vectra Cognito Networks 112 -- 6.7 Conclusion 115 -- References 115 -- 7 Privacy in Multi-Tenancy Frameworks Using AI 119 Shweta Solanki -- 7.1 Introduction 119 -- 7.2 Framework of Multi-Tenancy 120 -- 7.3 Privacy and Security in Multi-Tenant Base System Using AI 122 -- 7.4 Related Work 125 -- 7.5 Conclusion 125 -- References 126 -- 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 129 Shubhi Srivastava, Ankit Kumar and Shiv Prakash -- 8.1 Introduction 129 -- 8.1.1 Biometric 131 -- 8.1.2 Categories of Biometric 131 -- 8.1.2.1 Advantages of Biometric 132 -- 8.1.3 Significance and Scope 132 -- 8.1.4 Biometric Face Recognition 132 -- 8.1.5 Related Work 136 -- 8.1.6 Main Contribution 136 -- 8.1.7 Novelty Discussion 137 -- 8.2 The Proposed Methodolgy 139 -- 8.2.1 Face Detection Using Haar Algorithm 139 -- 8.2.2 Feature Extraction Using ILBP 141 -- 8.2.3 Dataset 143 -- 8.2.4 Classification Using SVM 143 -- 8.3 Experimental Results 145 -- 8.3.1 Face Detection 146 -- 8.3.2 Feature Extraction 146 -- 8.3.3 Recognize Face Image 147 -- 8.4 Conclusion 151 -- References 152 -- 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using ANN and IoT 155 S K Rajesh Kanna, O. …”
    Full text (MFA users only)
    Electronic eBook
  4. 544

    Evolutionary Robust Control. by Feyel, Philippe

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  5. 545

    Ecological modelling for sustainable development

    Published 2013
    Table of Contents: “…Ismail -- Modelling of Climatological Wind-Driven Circulation and Thermohaline Structures of Peninsular Malaysia's Eastern Continental Shelf using Princeton Ocean Model-Halimatun Muhamad , Fredolin T. …”
    Full text (MFA users only)
    Electronic eBook
  6. 546

    Stirling Cycle Engines : Inner Workings and Design. by Organ, Allan J.

    Published 2013
    Table of Contents: “…-- 3.6 The way forward -- 4 Equivalence conditions for volume variations -- 4.1 Kinematic configuration -- 4.2 'Additional' dead space -- 4.3 Net swept volume -- 5 The optimum versus optimization -- 5.1 An engine from Turkey rocks the boat -- 5.2 ... and an engine from Duxford -- 5.3 Schmidt on Schmidt -- 5.3.1 Volumetric compression ratio rv -- 5.3.2 Indicator diagram shape -- 5.3.3 More from the re-worked Schmidt analysis -- 5.4 Crank-slider mechanism again -- 5.5 Implications for engine design in general -- 6 Steady-flow heat transfer correlations -- 6.1 Turbulent -- or turbulent? …”
    Full text (MFA users only)
    Electronic eBook
  7. 547

    Manipulative voting dynamics by Gohar, Neelam

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  8. 548

    Mechanical and Electronics Engineering : proceedings of the International Conference on ICMEE 2009, Chennai, India, 24-26 July 2009

    Published 2010
    Table of Contents: “…Shafie -- The investigation of input shaping with different polarities for anti-sway control of a gantry crane system / Mohd. …”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  9. 549

    Aerospace Sensors. by Nebylov, Alexander

    Published 2012
    Table of Contents: “…Principles and examples of sensor integration -- 9.1 Sensor systems -- 9.1.1 The sensor system concept -- 9.1.2 Joint processing of readings from identical sensors -- 9.1.3 Joint processing of readings from cognate sensors with different measurement ranges -- 9.1.4 Joint processing of diverse sensors readings -- 9.1.5 Linear and nonlinear sensor integration algorithms -- 9.2 Fundamentals of integrated measuring system synthesis -- 9.2.1 Synthesis problem statement -- 9.2.2 Classes of dynamic system realization -- 9.2.3 Measurement accuracy indices -- 9.2.4 Excitation properties -- 9.2.5 Objective functions for robust system optimisation -- 9.2.6 Methods of dynamic system accuracy index analysis under excitation with given numerical characteristics of derivatives -- 9.2.6.1 Estimation of error variance -- 9.2.6.2 Example of error variance analysis -- 9.2.6.3 Use of equivalent harmonic excitation -- 9.2.6.4 Estimation of error maximal value -- 9.2.7 System optimization under maximum accuracy criteria -- 9.2.8 Procedures for the dimensional reduction of a measuring system -- 9.2.8.1 Determination of an optimal set of sensors -- 9.2.8.2 Analysis of the advantages of invariant system construction -- 9.2.8.3 Advantages of the zeroing of several system parameters -- 9.2.9 Realization and simulation of integration algorithms -- 9.3 Examples of two-component integrated navigation systems -- 9.3.1 Noninvariant robust integrated speed meter -- 9.3.2 Integrated radio-inertial measurement -- 9.3.3 Airborne gravimeter integration -- 9.3.4 The orbital verticant -- References…”
    Full text (MFA users only)
    Electronic eBook
  10. 550
  11. 551
  12. 552

    Understanding smart sensors by Frank, Randy

    Published 2013
    Table of Contents: “…ZigBee-Like Wireless -- 8.3.3. ANT+ -- 8.3.4.6LoWPAN -- 8.3.5. Near Field Communication (NFC) -- 8.3.6.Z-Wave -- 8.3.7. …”
    Full text (MFA users only)
    Electronic eBook
  13. 553

    Power system monitoring and control by Bevrani, Hassan

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  14. 554

    XML for DB2 information integration

    Published 2004
    Table of Contents: “…-- 3.4 Creating an XML schema from a database schema -- 3.4.1 The algorithm.…”
    Full text (MFA users only)
    Electronic eBook
  15. 555
  16. 556
  17. 557

    Sigma-Delta Converters. by De la Rosa, José M.

    Published 2018
    Table of Contents: “…4.5.2 Effect of Finite Slew Rate on CT-Ms 133 -- 4.6 Sources of Distortion in CT-Ms 134 -- 4.6.1 Nonlinearities in the Front-end Integrator 134 -- 4.6.2 Intersymbol Interference in the Feedback DAC 136 -- 4.7 Circuit Noise in CT-Ms 137 -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137 -- 4.7.2 Noise Analysis Considering SC Feedback DACs 139 -- 4.8 Clock Jitter in CT-Ms 140 -- 4.8.1 Jitter in Return-to-zero DACs 141 -- 4.8.2 Jitter in Non-return-to-zero DACs 142 -- 4.8.3 Jitter in Switched-capacitor DACs 144 -- 4.8.4 Lingering Effect of Clock Jitter Error 145 -- 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147 -- 4.9 Excess Loop Delay in CT-Ms 149 -- 4.9.1 Intuitive Analysis of ELD 149 -- 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151 -- 4.9.3 Alternative ELD Compensation Techniques 154 -- 4.10 Quantizer Metastability in CT-Ms 155 -- 4.11 Summary 159 -- References 160 -- 5 Behavioral Modeling and High-level Simulation 165 -- 5.1 Systematic Design Methodology of Modulators 165 -- 5.1.1 System Partitioning and Abstraction Levels 167 -- 5.1.2 Sizing Process 167 -- 5.2 Simulation Approaches for the High-level Evaluation of Ms 169 -- 5.2.1 Alternatives to Transistor-level Simulation 169 -- 5.2.2 Event-driven Behavioral Simulation Technique 171 -- 5.2.3 Programming Languages and Behavioral Modeling Platforms 172 -- 5.3 Implementing M Behavioral Models 173 -- 5.3.1 From Circuit Analysis to Computational Algorithms 173 -- 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175 -- 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178 -- 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182 -- 5.4 Efficient Behavioral Modeling of M Building Blocks using C-MEX S-functions 188 -- 5.4.1 Modeling of SC Integrators using S-functions 188 -- 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.…”
    Full text (MFA users only)
    Electronic eBook
  18. 558
  19. 559

    Polymer extrusion

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  20. 560

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook