Search Results - (((((((anti OR wkant) OR semantic) OR wien) OR cantor) OR anne) OR shape) OR hints) algorithms.

Refine Results
  1. 481

    Software engineering for embedded systems : methods, practical techniques, and applications

    Published 2013
    Table of Contents: “…-- Kinds of software reuse -- Implementing reuse by layers -- Going to the next level -- Introducing the component factory -- Factory hardware configuration -- Factory software configuration -- How the factory aids reusability -- RTOS agnosticism -- Arbitrary extensibility -- Conclusion -- References -- Example: latency vs. throughput in an eNodeB application -- Performance patterns and anti-patterns -- References -- The code optimization process -- Using the development tools -- Compiler optimization -- Basic compiler configuration -- Enabling optimizations -- Additional optimization configurations -- Using the profiler -- Background -- understanding the embedded architecture -- Resources -- Basic C optimization techniques -- Choosing the right data types -- Functions calling conventions -- Pointers and memory access -- Restrict and pointer aliasing -- Loops -- Additional tips and tricks -- General loop transformations -- Loop unrolling -- Multisampling -- Partial summation -- Software pipelining -- Example application of optimization techniques: cross-correlation -- Setup -- Original implementation -- Step 1: use intrinsics for fractional operations and specify loop counts -- Step 2: specify data alignment and modify for multisampling algorithm -- Step 3: assembly-language optimization -- Introduction -- Code size optimizations -- Compiler flags and flag mining -- Target ISA for size and performance tradeoffs -- Tuning the ABI for code size -- Caveat emptor: compiler optimization orthogonal to code size! …”
    Full text (MFA users only)
    Electronic eBook
  2. 482

    PID and predictive control of electrical drives and power supplies using MATLAB/Simulink by Wang, Liuping

    Published 2015
    Table of Contents: “…5.7 Tuning PI Control Systems for Power Converter 147 -- 5.7.1 Overview of the Designs 147 -- 5.7.2 Tuning the Current Controllers 149 -- 5.7.3 Tuning Voltage Controller 150 -- 5.7.4 Experimental Evaluations 154 -- 5.8 Tuning P Plus PI Controllers for Power Converter 157 -- 5.8.1 Design and Sensitivity Functions 157 -- 5.8.2 Experimental Results 158 -- 5.9 Robustness of Power Converter Control System Using PI Current Controllers 159 -- 5.9.1 Variation of Inductance Using PI Current Controllers 160 -- 5.9.2 Variation of Capacitance on Closed-loop Performance 163 -- 5.10 Summary 167 -- 5.10.1 Current Controllers 167 -- 5.10.2 Velocity, Position and Voltage Controllers 168 -- 5.10.3 Choice between P Current Control and PI Current Control 169 -- 5.11 Further Reading 169 -- References 169 -- 6 FCS Predictive Control in d − q Reference Frame 171 -- 6.1 States of IGBT Inverter and the Operational Constraints 172 -- 6.2 FCS Predictive Control of PMSM 175 -- 6.3 MATLAB Tutorial on Real-time Implementation of FCS-MPC 177 -- 6.3.1 Simulation Results 179 -- 6.3.2 Experimental Results of FCS Control 181 -- 6.4 Analysis of FCS-MPC System 182 -- 6.4.1 Optimal Control System 182 -- 6.4.2 Feedback Controller Gain 184 -- 6.4.3 Constrained Optimal Control 185 -- 6.5 Overview of FCS-MPC with Integral Action 187 -- 6.6 Derivation of I-FCS Predictive Control Algorithm 191 -- 6.6.1 Optimal Control without Constraints 191 -- 6.6.2 I-FCS Predictive Controller with Constraints 194 -- 6.6.3 Implementation of I-FCS-MPC Algorithm 196 -- 6.7 MATLAB Tutorial on Implementation of I-FCS Predictive Controller 197 -- 6.7.1 Simulation Results 198 -- 6.8 I-FCS Predictive Control of Induction Motor 201 -- 6.8.1 The Control Algorithm for an Induction Motor 202 -- 6.8.2 Simulation Results 204 -- 6.8.3 Experimental Results 205 -- 6.9 I-FCS Predictive Control of Power Converter 209 -- 6.9.1 I-FCS Predictive Control of a Power Converter 209 -- 6.9.2 Simulation Results 211 -- 6.9.3 Experimental Results 214.…”
    Full text (MFA users only)
    Electronic eBook
  3. 483
  4. 484

    Sigma-Delta Converters. by De la Rosa, José M.

    Published 2018
    Table of Contents: “…4.5.2 Effect of Finite Slew Rate on CT-Ms 133 -- 4.6 Sources of Distortion in CT-Ms 134 -- 4.6.1 Nonlinearities in the Front-end Integrator 134 -- 4.6.2 Intersymbol Interference in the Feedback DAC 136 -- 4.7 Circuit Noise in CT-Ms 137 -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137 -- 4.7.2 Noise Analysis Considering SC Feedback DACs 139 -- 4.8 Clock Jitter in CT-Ms 140 -- 4.8.1 Jitter in Return-to-zero DACs 141 -- 4.8.2 Jitter in Non-return-to-zero DACs 142 -- 4.8.3 Jitter in Switched-capacitor DACs 144 -- 4.8.4 Lingering Effect of Clock Jitter Error 145 -- 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147 -- 4.9 Excess Loop Delay in CT-Ms 149 -- 4.9.1 Intuitive Analysis of ELD 149 -- 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151 -- 4.9.3 Alternative ELD Compensation Techniques 154 -- 4.10 Quantizer Metastability in CT-Ms 155 -- 4.11 Summary 159 -- References 160 -- 5 Behavioral Modeling and High-level Simulation 165 -- 5.1 Systematic Design Methodology of Modulators 165 -- 5.1.1 System Partitioning and Abstraction Levels 167 -- 5.1.2 Sizing Process 167 -- 5.2 Simulation Approaches for the High-level Evaluation of Ms 169 -- 5.2.1 Alternatives to Transistor-level Simulation 169 -- 5.2.2 Event-driven Behavioral Simulation Technique 171 -- 5.2.3 Programming Languages and Behavioral Modeling Platforms 172 -- 5.3 Implementing M Behavioral Models 173 -- 5.3.1 From Circuit Analysis to Computational Algorithms 173 -- 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175 -- 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178 -- 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182 -- 5.4 Efficient Behavioral Modeling of M Building Blocks using C-MEX S-functions 188 -- 5.4.1 Modeling of SC Integrators using S-functions 188 -- 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.…”
    Full text (MFA users only)
    Electronic eBook
  5. 485
  6. 486

    Ocular therapeutics handbook : a clinical manual

    Published 2011
    Full text (MFA users only)
    Electronic eBook
  7. 487

    Polymer extrusion

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  8. 488

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook
  9. 489
  10. 490

    Visual Inspection Technology in the Hard Disc Drive Industry. by Muneesawang, Paisarn

    Published 2015
    Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  11. 491

    Public safety networks from LTE to 5G by Yarali, Abdulrahman

    Published 2020
    Table of Contents: “…9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4G-5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.…”
    Full text (MFA users only)
    Electronic eBook
  12. 492

    Fundamentals of Fluid Power Control. by Watton, John

    Published 2009
    Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
    Full text (MFA users only)
    Electronic eBook
  13. 493

    Queer Data Studies. by Keilty, Patrick

    Published 2024
    Full text (MFA users only)
    Electronic eBook
  14. 494
  15. 495
  16. 496
  17. 497

    Power system monitoring and control by Bevrani, Hassan

    Published 2014
    Full text (MFA users only)
    Electronic eBook