Search Results - (((((((kant OR anteil) OR ayant) OR lantier) OR cantor) OR anne) OR halted) OR hints) algorithms.

  1. 81

    Debates in the digital humanities 2016

    Published 2016
    Table of Contents: “…Father Busa Female Punch Card Operatives / Melissa Terras and Julianne Nyhan -- On the Origin of "Hack" and "Yack" / Bethany Nowviskie -- Reflections on a Movement: #transformDH, Growing Up / Moya Bailey, Anne Cong-Huyen, Alexis Lothian, and Amanda Phillips.…”
    Full text (MFA users only)
    Electronic eBook
  2. 82

    Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition. by Zaccone, Giancarlo

    Published 2018
    Table of Contents: “…; Artificial neural networks; The biological neurons; The artificial neuron; How does an ANN learn?; ANNs and the backpropagation algorithm; Weight optimization; Stochastic gradient descent; Neural network architectures; Deep Neural Networks (DNNs); Multilayer perceptron; Deep Belief Networks (DBNs).…”
    Full text (MFA users only)
    Electronic eBook
  3. 83

    Dermatologic principles and practice in oncology : conditions of the skin, hair, and nails in cancer patients

    Published 2013
    Table of Contents: “…Borovicka, Jennifer R.S. Gordon, Ann Cameron Haley, Nicole E. Larson and Dennis P. …”
    Full text (MFA users only)
    Electronic eBook
  4. 84
  5. 85

    Principles of artificial neural networks by Graupe, Daniel

    Published 2013
    Table of Contents: “…Fundamentals of biological neural networks -- ch. 3. Basic principles of ANNs and their early structures. 3.1. Basic principles of ANN design. 3.2. …”
    Full text (MFA users only)
    Electronic eBook
  6. 86
  7. 87

    Frontiers of Artificial Intelligence in Medical Imaging. by Razmjooy, Navid

    Published 2023
    Table of Contents: “…5.5 Electromagnetic field optimization algorithm -- 5.6 Developed electromagnetic field optimization algorithm -- 5.7 Simulation results -- 5.7.1 Image acquisition -- 5.7.2 Pre-processing stage -- 5.7.3 Processing stage -- 5.7.4 Classification -- 5.8 Final evaluation -- 5.9 Conclusions -- References -- Chapter 6 Evaluation of COVID-19 lesion from CT scan slices: a study using entropy-based thresholding and DRLS segmentation -- 6.1 Introduction -- 6.2 Context -- 6.3 Methodology -- 6.3.1 COVID-19 database -- 6.3.2 Image conversion and pre-processing -- 6.3.3 Image thresholding…”
    Full text (MFA users only)
    Electronic eBook
  8. 88
  9. 89

    Power and energy systems III : selected, peer reviewed papers from the 2013 3rd International Conference on Power and Energy Systems (ICPES 2013), November 23-24, Bangkok, Thailand

    Published 2014
    Table of Contents: “…Appropriate Electric Energy Conservation Measures for Big Mosques in Riyadh CityBayesian Algorithm Based on Airborne Power Supply System; Study on the Cooling System of Super-Capacitors for Hybrid Electric Vehicle; A Charging Management of Electric Vehicles Based on Campus Survey Data; Back-EMF Position Detection Technology for Brushless DC Motor; Stress State of Turbine Blade Root and Rim Considering Manufacturing Variations; Analysis on a Gas Turbine Sealing Disk Structure and Material Strength; A Kind of Adjustable Electric Heating Pipe Power Electrode Preparation Equipment.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  10. 90

    Mathematical Methods in Interdisciplinary Sciences. by Chakraverty, Snehashish

    Published 2020
    Table of Contents: “…1.2.2.1 Architecture of Single-Layer LgNN Model -- 1.2.2.2 Training Algorithm of Laguerre Neural Network (LgNN) -- 1.2.2.3 Gradient Computation of LgNN -- 1.3 Methodology for Solving a System of Fredholm Integral Equations of Second Kind -- 1.3.1 Algorithm -- 1.4 Numerical Examples and Discussion -- 1.4.1 Differential Equations and Applications -- 1.4.2 Integral Equations -- 1.5 Conclusion -- References -- Chapter 2 Deep Learning in Population Genetics: Prediction and Explanation of Selection of a Population -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Dataset Description…”
    Full text (MFA users only)
    Electronic eBook
  11. 91

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
    Full text (MFA users only)
    Electronic eBook
  12. 92

    Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications

    Published 2012
    Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
    Full text (MFA users only)
    Electronic eBook
  13. 93

    Pediatric incontinence : evaluation and clinical management

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  14. 94
  15. 95

    Digitalization of Society and Socio-Political Issues. 1, Digital, Communication, and Culture

    Published 2019
    Table of Contents: “…The Digitalization of Cultural Policies in France 149; Anne BELLON 14.1.…”
    Full text (MFA users only)
    Electronic eBook
  16. 96
  17. 97

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook
  18. 98

    Computational models of argument : Proceedings of COMMA 2012

    Published 2012
    Table of Contents: “…Simari -- Automated Deployment of Argumentation Protocols / Michael Rovatsos -- On Preferred Extension Enumeration in Abstract Argumentation / Katie Atkinson -- Towards Experimental Algorithms for Abstract Argumentation / Katie Atkinson.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  19. 99

    Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization by Kim, Kwang-Yong, 1956-, Samad, Abdus, Benini, Ernesto

    Published 2019
    Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
    Full text (MFA users only)
    Electronic eBook
  20. 100

    The Johns Hopkins guide to digital media

    Published 2014
    Table of Contents: “…Berry -- Cognitive implications of new media / Anne Mangen and Jean-Luc Velay -- Collaborative narrative / Scott Rettberg -- Collective intelligence / John Duda -- Combinatory and automatic text generation / Philippe Bootz and Christopher Funkhouser -- Computational linguistics / Inderjeet Mani -- Conceptual writing / Darren Wershler -- Copyright / Benjamin J. …”
    Book