Search Results - (((((((kant OR giant) OR mantis) OR arts) OR cantor) OR anne) OR maarten) OR hints) algorithms.

  1. 281
  2. 282
  3. 283

    Language, vision, and music : selected papers from the 8th International Workshop on the Cognitive Science of Natural Language Processing, Galway, Ireland, 1999

    Published 2002
    Table of Contents: “…-- The analogical foundations of creativity in language, culture &amp -- the arts: "The Upper Paleolithic to 2100CE" -- Creativity in humans, computers, and the rest of God's creatures. …”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  4. 284

    Elements of algebraic coding systems by Rocha, Valdemar C. da, 1947-

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  5. 285
  6. 286

    Short Stories and Political Philosophy : Power, Prose, and Persuasion. by Hale, Kimberly Hurd

    Published 2018
    Table of Contents: “…Social Interactions, Observation, and JusticeHacking the Human Condition: Enter Big Data; Digital Natives; Surveillance and the Human Condition; The Economics of Big Data; Increased Data, Better Algorithms, More Perfect Matches; Notes; Bibliography; Chapter 3; Paolo Bacigalupi's "Pop Squad" and the Examined Life Worth Living; The Symposium and the Search for Immortality; Children of the Body; Children of the Soul; Meaningless Life; Notes; Bibliography; Chapter 4; All the World's a Cage; Meaning and the Masses; Soul Meets Body; The End of Art; Conclusion; Notes; Bibliography; Chapter 5…”
    Full text (MFA users only)
    Electronic eBook
  7. 287
  8. 288

    Electronic Skin by Ibrahim, Ali

    Published 2021
    Full text (MFA users only)
    Electronic eBook
  9. 289

    Mechanisms and games for dynamic spectrum allocation

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  10. 290

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
    Full text (MFA users only)
    Electronic eBook
  11. 291

    Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications

    Published 2012
    Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
    Full text (MFA users only)
    Electronic eBook
  12. 292

    Super-Resolution Imaging. by Milanfar, Peyman

    Published 2010
    Full text (MFA users only)
    Electronic eBook
  13. 293
  14. 294

    Wireless mesh networks by Akyildiz, Ian Fuat

    Published 2009
    Full text (MFA users only)
    Electronic eBook
  15. 295
  16. 296

    Image Modeling of the Human Eye. by Acharya U, Rajendra

    Published 2008
    Full text (MFA users only)
    Electronic eBook
  17. 297

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook
  18. 298
  19. 299
  20. 300

    Haptic Feedback Teleoperation of Optical Tweezers by Ni, Zhenjiang

    Published 2014
    Table of Contents: “…Position detection devices; 3.2.2. Candidate algorithms.…”
    Full text (MFA users only)
    Electronic eBook