Search Results - (((((((kant OR want) OR mantis) OR when) OR cantor) OR anne) OR share) OR hints) algorithms.

  1. 601

    Lippincott's primary care orthopaedics

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  2. 602

    Mastering Active Directory by Francis, Dishan

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  3. 603

    Informatics for Health by Randell, R.

    Published 2017
    Table of Contents: “…Connected and Digital Health -- Design and Validation of a Platform to Evaluate mHealth Apps -- Reasoning and Data Representation in a Health and Lifestyle Support System -- Feasibility of Representing a Danish Microbiology Model Using FHIR -- Establishment of Requirements and Methodology for the Development and Implementation of GreyMatters, a Memory Clinic Information System -- Nurses' Perspectives on In-Home Monitoring of Elderlies's Motion Pattern -- Monitoring Activities Related to Medication Adherence in Ambient Assisted Living Environments -- Design, Implementation and Operation of a Reading Center Platform for Clinical Studies -- Web Validation Service for Ensuring Adherence to the DICOM Standard -- A Decision Support System for Cardiac Disease Diagnosis Based on Machine Learning Methods -- Severity Summarization and Just in Time Alert Computation in mHealth Monitoring -- Towards Safe and Efficient Child Primary Care -- Gaps in the Use of Unique Identifiers in Europe -- Why Are Children's Interests Invisible in European National E-Health Strategies? -- Shared Decision Making via Personal Health Record Technology for Routine Use of Diabetic Youth: A Study Protocol -- A Medication Reminder Mobile App: Does It Work for Different Age Ranges -- Internet of Things in Health Trends Through Bibliometrics and Text Mining -- Developing the Safety Case for MediPi: An Open-Source Platform for Self Management -- UK Health and Social Care Case Studies: Iterative Technology Development -- 2. …”
    Full text (MFA users only)
    Electronic eBook
  4. 604
  5. 605
  6. 606

    Techniques and key points for endoscopic cranial base reconstruction by Pinheiro-Neto, Carlos, Peris-Celda, Maria

    Published 2021
    Table of Contents: “…Techniques and Key Points for Endoscopic Cranial Base Reconstruction -- MedOne Access Information -- Tittle Page -- Copyright -- Dedication -- Contents -- Videos -- Foreword -- Preface -- Acknowledgments -- Contributors -- Section I Introduction -- 1 Principles of Endoscopic Cranial Base Reconstruction -- 1.1 Introduction -- 1.2 Fundamentals of Endonasal Reconstruction -- 1.3 Repair Options -- 1.4 Vascularized Reconstruction -- 1.5 Reconstruction Decalogue -- 2 Operative Planning and Treatment Algorithm -- 2.1 Introduction -- 2.2 Preoperative Planning -- 2.3 Perioperative and Intraoperative Considerations -- 2.4 Treatment Algorithm -- 2.5 Postoperative Considerations -- 2.5.1 Inpatient Care -- 2.5.2 Outpatient Care -- Section II Nasoseptal Flap and Variations -- 3 Standard Nasoseptal Flap -- 3.1 Anatomy -- 3.2 Fundamentals -- 3.3 Indications -- 3.4 Limitations -- 3.5 Surgical Technique -- 3.5.1 Harvest -- 3.5.2 Reconstruction -- 3.6 Postoperative Care -- 3.7 Managing Complications -- 4 Rescue Nasoseptal Flap -- 4.1 Fundamentals -- 4.2 Indications -- 4.3 Limitations -- 4.4 Surgical Technique -- 4.5 Postoperative Care -- 4.6 Complications -- 5 Extended Nasoseptal Flap -- 5.1 Fundamentals -- 5.2 Indications -- 5.3 Limitations -- 5.4 Surgical Technique -- 5.4.1 Harvest -- 5.4.2 Reconstruction -- 5.5 Postoperative Care -- 5.5.1 One-Week Postoperative Visit -- 5.5.2 One-Month Postoperative Visit -- 5.5.3 Four-Month Postoperative Visit -- 5.6 Complications -- 6 Nasoseptal Flap Pedicle Release -- 6.1 Anatomy -- 6.2 Fundamentals -- 6.3 Indications -- 6.4 Limitations -- 6.5 Surgical Technique -- 6.5.1 360-Degree Bone Removal around the SPA Foramen (Osseous Release) -- 6.5.2 Ipsilateral Transpterygoid Approach -- 6.5.3 360-Degree Circumferential Incision in the Periosteum of the PPF around the SPA (Periosteal Release) -- 6.6 Postoperative Care.…”
    Full text (MFA users only)
    Electronic eBook
  7. 607

    RSSDI Diabetes update 2018

    Published 2019
    Table of Contents: “…-- Chapter 42: Etiopathogenesis and Management of Diabetic Heart Failure -- Chapter 43: Diabetes and Stroke -- Chapter 44: Cellular Mechanism of Atherosclerosis in Diabetes Mellitus -- Chapter 45: Nondiabetic Ocular Complications in Diabetes -- Chapter 46: Nondiabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus: When to Suspect?.…”
    Full text (MFA users only)
    eBook
  8. 608

    Binary decision diagrams and extensions for system reliability analysis by Xing, Liudong

    Published 2015
    Table of Contents: “…7.5 Applications to Phased-Mission Systems -- 7.5.1 Mini-Component Concept -- 7.5.2 Extended SEA Method for PMS -- 7.5.3 An Illustrative Example -- 7.6 Summary -- 8 Shared Decision Diagrams -- 8.1 Multi-Rooted Decision Diagrams -- 8.2 Multi-Terminal Decision Diagrams -- 8.3 Performance Study on Multi-State Systems -- 8.3.1 Example Analyses -- 8.3.2 Benchmark Studies -- 8.4 Application to Phased-Mission Systems -- 8.4.1 PMS Analysis Using MDDs -- 8.4.1.1 Step 1-Variable Encoding -- 8.4.1.2 Step 2-Input Variable Ordering -- 8.4.1.3 Step 3-PMS MDD Generation -- 8.4.1.4 Step 4-PMS MDD Evaluation -- 8.4.2 An Illustrative Example -- 8.5 Application to Multi-State k-out-of-n Systems -- 8.5.1 Multi-State k-out-of-n System Analysis Using MDDs -- 8.5.1.1 Step 1- BDDkl Generation -- 8.5.1.2 Step 2- MDDkl Generation -- 8.5.1.3 Step 3- MDDSj Generation -- 8.5.1.4 Step 4-System MDDSj Evaluation -- 8.5.2 An Illustrative Example -- 8.6 Importance Measures -- 8.6.1 Capacity Networks and Reliability Modeling -- 8.6.2 Composite Importance Measures (Type 1) -- 8.6.2.1 General CIMs -- 8.6.2.2 Alternative CIMs -- 8.6.3 Computing CIMs Using MDD -- 8.6.4 An Illustrative Example -- 8.7 Failure Frequency Based Measures -- 8.8 Summary -- Conclusions -- References -- Index -- EULA.…”
    Full text (MFA users only)
    Electronic eBook
  9. 609

    Official Google Cloud Certified Professional Data Engineer study guide by Sullivan, Dan, 1962-

    Published 2020
    Table of Contents: “…Row Key Access 13 -- Unstructured Data 15 -- Google's Storage Decision Tree 16 -- Schema Design Considerations 16 -- Relational Database Design 17 -- NoSQL Database Design 20 -- Exam Essentials 23 -- Review Questions 24 -- Chapter 2 Building and Operationalizing Storage Systems 29 -- Cloud SQL 30 -- Configuring Cloud SQL 31 -- Improving Read Performance with Read Replicas 33 -- Importing and Exporting Data 33 -- Cloud Spanner 34 -- Configuring Cloud Spanner 34 -- Replication in Cloud Spanner 35 -- Database Design Considerations 36 -- Importing and Exporting Data 36 -- Cloud Bigtable 37 -- Configuring Bigtable 37 -- Database Design Considerations 38 -- Importing and Exporting 39 -- Cloud Firestore 39 -- Cloud Firestore Data Model 40 -- Indexing and Querying 41 -- Importing and Exporting 42 -- BigQuery 42 -- BigQuery Datasets 43 -- Loading and Exporting Data 44 -- Clustering, Partitioning, and Sharding Tables 45 -- Streaming Inserts 46 -- Monitoring and Logging in BigQuery 46 -- BigQuery Cost Considerations 47 -- Tips for Optimizing BigQuery 47 -- Cloud Memorystore 48 -- Cloud Storage 50 -- Organizing Objects in a Namespace 50 -- Storage Tiers 51 -- Cloud Storage Use Cases 52 -- Data Retention and Lifecycle Management 52 -- Unmanaged Databases 53 -- Exam Essentials 54 -- Review Questions 56 -- Chapter 3 Designing Data Pipelines 61 -- Overview of Data Pipelines 62 -- Data Pipeline Stages 63 -- Types of Data Pipelines 66 -- GCP Pipeline Components 73 -- Cloud Pub/Sub 74 -- Cloud Dataflow 76 -- Cloud Dataproc 79 -- Cloud Composer 82 -- Migrating Hadoop and Spark to GCP 82 -- Exam Essentials 83 -- Review Questions 86 -- Chapter 4 Designing a Data Processing Solution 89 -- Designing Infrastructure 90 -- Choosing Infrastructure 90 -- Availability, Reliability, and Scalability of Infrastructure 93 -- Hybrid Cloud and Edge Computing 96 -- Designing for Distributed Processing 98 -- Distributed Processing: Messaging 98 -- Distributed Processing: Services 101 -- Migrating a Data Warehouse 102 -- Assessing the Current State of a Data Warehouse 102 -- Designing the Future State of a Data Warehouse 103 -- Migrating Data, Jobs, and Access Controls 104 -- Validating the Data Warehouse 105 -- Exam Essentials 105 -- Review Questions 107 -- Chapter 5 Building and Operationalizing Processing Infrastructure 111 -- Provisioning and Adjusting Processing Resources 112 -- Provisioning and Adjusting Compute Engine 113 -- Provisioning and Adjusting Kubernetes Engine 118 -- Provisioning and Adjusting Cloud Bigtable 124 -- Provisioning and Adjusting Cloud Dataproc 127 -- Configuring Managed Serverless Processing Services 129 -- Monitoring Processing Resources 130 -- Stackdriver Monitoring 130 -- Stackdriver Logging 130 -- Stackdriver Trace 131 -- Exam Essentials 132 -- Review Questions 134 -- Chapter 6 Designing for Security and Compliance 139 -- Identity and Access Management with Cloud IAM 140 -- Predefined Roles 141 -- Custom Roles 143 -- Using Roles with Service Accounts 145 -- Access Control with Policies 146 -- Using IAM with Storage and Processing Services 148 -- Cloud Storage and IAM 148 -- Cloud Bigtable and IAM 149 -- BigQuery and IAM 149 -- Cloud Dataflow and IAM 150 -- Data Security 151 -- Encryption 151 -- Key Management 153 -- Ensuring Privacy with the Data Loss Prevention API 154 -- Detecting Sensitive Data 154 -- Running Data Loss Prevention Jobs 155 -- Inspection Best Practices 156 -- Legal Compliance 156 -- Health Insurance Portability and Accountability Act (HIPAA) 156 -- Children's Online Privacy Protection Act 157 -- FedRAMP 158 -- General Data Protection Regulation 158 -- Exam Essentials 158 -- Review Questions 161 -- Chapter 7 Designing Databases for Reliability, Scalability, and Availability 165 -- Designing Cloud Bigtable Databases for Scalability and Reliability 166 -- Data Modeling with Cloud Bigtable 166 -- Designing Row-keys 168 -- Designing for Time Series 170 -- Use Replication for Availability and Scalability 171 -- Designing Cloud Spanner Databases for Scalability and Reliability 172 -- Relational Database Features 173 -- Interleaved Tables 174 -- Primary Keys and Hotspots 174 -- Database Splits 175 -- Secondary Indexes 176 -- Query Best Practices 177 -- Designing BigQuery Databases for Data Warehousing 179 -- Schema Design for Data Warehousing 179 -- Clustered and Partitioned Tables 181 -- Querying Data in BigQuery 182 -- External Data Access 183 -- BigQuery ML 185 -- Exam Essentials 185 -- Review Questions 188 -- Chapter 8 Understanding Data Operations for Flexibility and Portability 191 -- Cataloging and Discovery with Data Catalog 192 -- Searching in Data Catalog 193 -- Tagging in Data Catalog 194 -- Data Preprocessing with Dataprep 195 -- Cleansing Data 196 -- Discovering Data 196 -- Enriching Data 197 -- Importing and Exporting Data 197 -- Structuring and Validating Data 198 -- Visualizing with Data Studio 198 -- Connecting to Data Sources 198 -- Visualizing Data 200 -- Sharing Data 200 -- Exploring Data with Cloud Datalab 200 -- Jupyter Notebooks 201 -- Managing Cloud Datalab Instances 201 -- Adding Libraries to Cloud Datalab Instances 202 -- Orchestrating Workflows with Cloud Composer 202 -- Airflow Environments 203 -- Creating DAGs 203 -- Airflow Logs 204 -- Exam Essentials 204 -- Review Questions 206 -- Chapter 9 Deploying Machine Learning Pipelines 209 -- Structure of ML Pipelines 210 -- Data Ingestion 211 -- Data Preparation 212 -- Data Segregation 215 -- Model Training 217 -- Model Evaluation 218 -- Model Deployment 220 -- Model Monitoring 221 -- GCP Options for Deploying Machine Learning Pipeline 221 -- Cloud AutoML 221 -- BigQuery ML 223 -- Kubeflow 223 -- Spark Machine Learning 224 -- Exam Essentials 225 -- Review Questions 227 -- Chapter 10 Choosing Training and Serving Infrastructure 231 -- Hardware Accelerators 232 -- Graphics Processing Units 232 -- Tensor Processing Units 233 -- Choosing Between CPUs, GPUs, and TPUs 233 -- Distributed and Single Machine Infrastructure 234 -- Single Machine Model Training 234 -- Distributed Model Training 235 -- Serving Models 236 -- Edge Computing with GCP 237 -- Edge Computing Overview 237 -- Edge Computing Components and Processes 239 -- Edge TPU 240 -- Cloud IoT 240 -- Exam Essentials 241 -- Review Questions 244 -- Chapter 11 Measuring, Monitoring, and Troubleshooting Machine Learning Models 247 -- Three Types of Machine Learning Algorithms 248 -- Supervised Learning 248 -- Unsupervised Learning 253 -- Anomaly Detection 254 -- Reinforcement Learning 254 -- Deep Learning 255 -- Engineering Machine Learning Models 257 -- Model Training and Evaluation 257 -- Operationalizing ML Models 262 -- Common Sources of Error in Machine Learning Models 263 -- Data Quality 264 -- Unbalanced Training Sets 264 -- Types of Bias 264 -- Exam Essentials 265 -- Review Questions 267 -- Chapter 12 Leveraging Prebuilt Models as a Service 269 -- Sight 270 -- Vision AI 270 -- Video AI 272 -- Conversation 274 -- Dialogflow 274 -- Cloud Text-to-Speech API 275 -- Cloud Speech-to-Text API 275 -- Language 276 -- Translation 276 -- Natural Language 277 -- Structured Data 278 -- Recommendations AI API 278 -- Cloud Inference API 280 -- Exam Essentials 280 -- Review Questions 282 -- Appendix Answers to Review Questions 285 -- Chapter 1: Selecting Appropriate Storage Technologies 286 -- Chapter 2: Building and Operationalizing Storage Systems 288 -- Chapter 3: Designing Data Pipelines 290 -- Chapter 4: Designing a Data Processing Solution 291 -- Chapter 5: Building and Operationalizing Processing Infrastructure 293 -- Chapter 6: Designing for Security and Compliance 295 -- Chapter 7: Designing Databases for Reliability, Scalability, and Availability 296 -- Chapter 8: Understanding Data Operations for Flexibility and Portability 298 -- Chapter 9: Deploying Machine Learning Pipelines 299 -- Chapter 10: Choosing Training and Serving Infrastructure 301 -- Chapter 11: Measuring, Monitoring, and Troubleshooting Machine Learning Models 303 -- Chapter 12: Leveraging Prebuilt Models as a Service 304 -- Index 307.…”
    Full text (MFA users only)
    Electronic eBook
  10. 610

    Fundamentals of Fluid Power Control. by Watton, John

    Published 2009
    Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
    Full text (MFA users only)
    Electronic eBook
  11. 611
  12. 612
  13. 613

    Credit securitizations and derivatives : challenges for the global markets

    Published 2013
    Table of Contents: “…Market Credit Risk Pricing -- Regulation -- Developments in Structured Finance Markets -- Impairments of Asset-Backed Securities and Outstanding Ratings -- Issuance of Asset-backed Securities and Outstanding Volume -- Global CDO Issuance and Outstanding Volume -- PART II CREDIT PORTFOLIO RISK MEASUREMENT -- Mortgage Credit Risk -- Five C's of Credit and Mortgage Credit Risk -- Determinants of Mortgage Default, Loss Given Default and Exposure at Default -- Determinants of Mortgage Default -- Determinants of Mortgage LGD -- Determinants of Mortgage EAD -- Modeling Methods for Default, LGD and EAD -- Model Risk Management -- Credit Portfolio Correlations and Uncertainty -- Introduction -- Gaussian and Semi-Gaussian Single Risk Factor Model -- Individual and Simultaneous Confidence Bounds and Intervals -- Confidence Intervals for Asset Correlations -- Confidence Intervals for Default and Survival Time Correlations -- Confidence Intervals for Default Correlations -- Confidence Intervals for Survival Time Correlations -- Credit Portfolio Correlations with Dynamic Leverage Ratios -- The Hui et al. (2007) Model -- The Method of Images for Constant Coefficients -- The Method of Images for Time-Varying Coefficients -- Modelling Default Correlations in a Two-Firm Model -- Default Correlations -- A Two-Firm Model with Dynamic Leverage Ratios -- Method of Images for Constant Coefficients -- Method of Images for Time-Varying Coefficients -- Alternative Methodologies for General Values -- Numerical Results -- Accuracy -- The Impact of Correlation between Two Firms -- The Impact of Different Credit Quality Paired Firms -- The Impact of Volatilities -- The Impact of Drift Levels -- The Impact of Initial Value of Leverage Ratio Levels -- Impact of Correlation between Firms and Interest Rates -- The Price of Credit-Linked Notes -- A Hierarchical Model of Tail-Dependent Asset Returns -- The Variance Compound Gamma Model -- Multivariate Process for Logarithmic Asset Returns -- Dependence Structure -- Sampling -- Copula Properties -- An Application Example -- Portfolio Setup -- Test Portfolios -- Parameter Setup -- Simulation Results -- Importance Sampling Algorithm -- Conclusions -- Appendix A: The VCG Probability Distribution Function Appendix B: HAC Representation for the VCG Framework -- Monte Carlo Methods for Portfolio Credit Risk -- Modeling Credit Portfolio Losses -- Risk Measures -- Modeling Dependency -- Estimating Risk Measures via Monte Carlo -- Crude Monte Carlo Estimators -- Importance Sampling -- Specific Models -- The Bernoulli Mixture Model -- Factor Models -- Copula Models -- Intensity Models -- An Example Point Process Model -- Appendix A: A Primer on Rare-event Simulation -- Efficiency -- Importance Sampling -- The Choice of g -- Adaptive Importance Sampling -- Importance Sampling for Stochastic Processes -- Credit Portfolio Risk and Diversification -- Introduction -- Model Setup -- Independent Asset Values -- Correlated Asset Values -- Large Portfolio Limit -- Correlated Diffusion -- Correlated GARCH Process -- Applications of the Structural Recovery Rate -- Conclusions -- PART III CREDIT PORTFOLIO RISK SECURITIZATION AND TRANCHING -- Differences in Tranching Methods: Some Results and Implications -- Defining a Tranche -- The Mathematics of Tranching -- PD-based Tranching -- EL-based Tranching -- The EL of a Tranche Necessarily Increases When Either the Attachment Point or the Detachment Point is Decreased -- Upper Bound on Tranche Expected LGD (LGDt) Assumption Given EL-based Tranches -- Skipping of Some Tranches in the EL-based Approach -- Global Structured Finance Rating -- Asset-Backed Securities -- The ABS Structure for the Experiment -- Cash Flow Modeling -- Modeling and Simulating Defaults -- Expected Loss Rating -- Global Sensitivity Analysis -- Elementary Effects -- Variance-based Method -- Global Sensitivity Analysis Results -- Uncertainty Analysis -- Sensitivity Analysis -- Global Rating -- PART IV CREDIT DERIVATIVES -- Analytic Dynamic Factor Copula Model -- Pricing Equations -- One-factor Copula Model -- Multi-period Factor Copula Models -- Calibration -- Dynamic Modeling of Credit Derivatives -- General Model Choice -- Modeling Option Prices -- Modeling Credit Risk -- Portfolio Credit Derivatives -- Modeling Asset Dynamics -- The Market Model -- The Asset-value Model -- Empirical Analysis -- Elementary Data -- Implied Dividends -- Market Dynamics -- Asset Value Model -- Tranche Pricing -- Out-of-time Application -- Pricing and Calibration in Market Models -- Basic notions -- The model -- Modeling Assumptions -- Absence of Arbitrage -- An affine specification -- Pricing -- Calibration -- Calibration Procedure -- Calibration Results -- Appendix A: Computations -- Counterparty Credit Risk and Clearing of Derivatives -- From the Perspective of an Industrial Corporate with a Focus on Commodity Markets -- Credit exposures in commodity business -- Settlement Exposure -- Performance Exposure -- Example of Fixed Price Deal with Performance Exposure -- Example of a Floating Price Deal with Performance Exposure -- General Remarks on Credit Exposure Concepts -- Ex Ante exposure-reducing techniques -- Payment Terms -- Material Adverse Change Clauses -- Master Agreements -- Netting -- Margining -- Close Out Exposure and Threshold -- Ex Ante risk-reducing techniques -- Credit Enhancements in General -- Parent Company Guarantees -- Letters of Credit -- Credit Insurance -- Clearing via a Central Counterparty -- Ex Post risk-reducing techniques -- Factoring -- Novation -- Risk-reducing Trades -- Hedging with CDS -- Hedging with Contingent-CDS -- Hedging with Puts on Equity -- Ex Post work out considerations -- Practical credit risk management and pricing Peculiarities of commodity markets -- Peculiarities of commodity related credit portfolios -- Credit Risk Capital for a commodity related portfolio measured with an extension of CreditMetrics -- CreditRisk+ study: applied to a commodity related credit portfolio -- CDS Industrial Sector Indices, Credit and Liquidity Risk -- The Data -- Methodology and Results -- Preliminary Analysis -- Common Factor Analysis -- Stability of Relations -- Risk Transfer and Pricing of Illiquid Assets with Loan CDS -- Shipping Market -- Loan Credit Default Swaps -- LCDS Pricing -- Modeling LCDS Under the Intensity-based Model -- Valuation Framework for LCDS -- The Structural Approach -- Credit Risk in Shipping Loans -- Valuation of LCDS on Shipping Loans -- Simulation Model -- Numerical Results -- Appendix A: Monte Carlo Parameterization PART V REGULATION -- Regulatory Capital Requirements for Securitizations -- Regulatory Approaches for Securitizations -- Ratings Based Approach (RBA) -- Supervisory Formula Approach (SFA) -- Standardized Approach (SA) -- Post-crisis Revisions to the Basel Framework -- Regulating OTC Derivatives -- The Wall Street Transparency and Accountability Part of the Dodd-Frank Act of 2010 -- Which Derivatives Will Be Affected? …”
    Full text (MFA users only)
    Electronic eBook
  14. 614

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…<i>3</i>Big Data Analytics. 31</p> <p>1.7.4 Visualizing Big Data. 32</p> <p>1.8 Big Data Technology. 32</p> <p>1.8.1 Challenges faced by Big Data technology. 34</p> <p>1.8.1 Heterogeneity and incompleteness. 34</p> <p>1.8.2 Volume and velocity of the Data. 35</p> <p>1.8.3 Data Storage. 35</p> <p>1.8.4 Data Privacy. 36</p> <p>1.9 Big Data Applications. 36</p> <p>1.10 Big Data Use Cases. 37</p> <p>1.9. 1 Healthcare. 37</p> <p>1.9.2 Telecom.. 38</p> <p>1.9.3 Financial Services. 39</p> <p>Chapter 1 refresher: 40</p> <p>Conceptual short Questions with answers. 43</p> <p>Frequently asked Interview questions. 45</p> <p>Chapter Objective. 46</p> <p>Big Data Storage Concepts. 46</p> <p>2.1 Cluster computing. 47</p> <p>2.1.1 Types of cluster. 49</p> <p>2.1.1.1 High availability cluster. 50</p> <p>2.1.1.2 Load balancing cluster. 50</p> <p>2.1.2 Cluster structure. 51</p> <p>2.3 Distribution Models. 53</p> <p>2.3.1 Sharding. 54</p> <p>2.3.2 Data Replication. 56</p> <p>2.3.2.1 Master-Slave model 57</p> <p>2.3.2.2 Peer-to-Peer model 58</p> <p>2.3.3 Sharding and Replication. 59</p> <p>2.4 Distributed file system.. 60</p> <p>2.5 Relational and Non Relational Databases. 61</p> <p>CoursesOffered. 62</p> <p>Figure 2.12 Data divided across multiple related tables. 62</p> <p>2.4.2 RDBMS Databases. 63</p> <p>2.4.3 NoSQL Databases. 63</p> <p>2.4.4 NewSQL Databases. 64</p> <p>2.5 Scaling Up and Scaling Out Storage. 65</p> <p>Chapter 2 refresher. 67</p> <p>Conceptual short questions with answers. 69</p> <p>Chapter Objective. 72</p> <p>3.1 Introduction to NoSQL. 72</p> <p>3.2 Why NoSQL. 72</p> <p>3.3 CAP theorem.. 73</p> <p>3.4 ACID.. 75</p> <p>3.5 BASE. 76</p> <p>3.6 Schemaless Database. 77</p> <p>3.7 NoSQL (Not Only SQL) 77</p> <p>3.7.1 NoSQL Vs RDBMS. 78</p> <p>3.7.2Features of NoSQL database. 79</p> <p>3.7.3Types of NoSQL Technologies. 80</p> <p>3.7.3.1 Key-Value store database. 81</p> <p>3.7.3.2 Column-store database. 82</p> <p>3.7.3.3 Document Oriented Database. 84</p> <p>3.7.3.4 Graph-oriented Database. 86</p> <p>3.7.4 NoSQL Operations. 93</p> <p>3.9 Migrating from RDBMS to NoSQL. 98</p> <p>Chapter 3 refresher. 99</p> <p>Conceptual short questions with answers. 102</p> <p>Chapter Objective. 104</p> <p>4.1 Data Processing. 104</p> <p>4.2 Shared Everything Architecture. 106</p> <p>4.2.1 Symmetric multiprocessing architecture. 107</p> <p>4.2.2 Distributed Shared memory. 108</p> <p>4.3 Shared nothing architecture. 109</p> <p>4.4 Batch Processing. 110</p> <p>4.5 Real-Time Data Processing. 111</p> <p>4.6 Parallel Computing. 112</p> <p>4.7 Distributed Computing. 113</p> <p>4.8 Big Data Virtualization. 113</p> <p>4.8.1 Attributes of Virtualization. 114</p> <p>4.8.1.1 Encapsulation. 115</p> <p>4.8.1.2 Partitioning. 115</p> <p>4.8.1.3 Isolation. 115</p> <p>4.8.2Big Data Server Virtualization. 116</p> <p>4.9 Introduction. 116</p> <p>4.10 Cloud computing types. 118</p> <p>4.11Cloud Services. 120</p> <p>4.12 Cloud Storage. 121</p> <p>4.12.1 Architecture of GFS. 121</p> <p>4.12.1.1 Master. 123</p> <p>4.12.1.2 Client. 123</p> <p>4.13 Cloud Architecture. 127</p> <p>Cloud Challenges. 129</p> <p>Chapter 4 Refresher. 130</p> <p>Conceptual short questions with answers. 133</p> <p>Chapter Objective. 139</p> <p>5.1 Apache Hadoop. 139</p> <p>5.1.1 Architecture of Apache Hadoop. 140</p> <p>5.1.2Hadoop Ecosystem Components Overview.. 140</p> <p>5.2 Hadoop Storage. 142</p> <p>5.2.1HDFS (Hadoop Distributed File System). 142</p> <p>5.2.2Why HDFS?. …”
    Full text (MFA users only)
    Electronic eBook
  15. 615

    Statistics for business by Mariappan, Perumal

    Published 2019
    Full text (MFA users only)
    Electronic eBook
  16. 616
  17. 617

    Sigma-Delta Converters. by De la Rosa, José M.

    Published 2018
    Table of Contents: “…6.3.1 Hardware Emulation of CT-Ms on an FPGA 257 -- 6.3.2 GPU-accelerated Computing of CT-Ms 258 -- 6.4 Using Multi-objective Evolutionary Algorithms to Optimize Ms 259 -- 6.4.1 Combining MOEA with SIMSIDES 261 -- 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT-Ms 262 -- 6.5 Summary 269 -- References 269 -- 7 Electrical Design of ??…”
    Full text (MFA users only)
    Electronic eBook
  18. 618
  19. 619

    Visual Inspection Technology in the Hard Disc Drive Industry. by Muneesawang, Paisarn

    Published 2015
    Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  20. 620