Search Results - (((((((kant OR want) OR semantic) OR cantee) OR cantor) OR anne) OR carter) OR wants) algorithms.

  1. 281

    From complexity in the natural sciences to complexity in operation management systems by Briffaut, Jean-Pierre

    Published 2019
    Table of Contents: “…Complexity in perspective -- 1.2.1. Etymology and semantics -- 1.2.2. Methods proposed for dealing with complexity from the Middle Ages to the 17th Century and their current outfalls -- 1.3. …”
    Full text (MFA users only)
    Electronic eBook
  2. 282

    Anesthesia student survival guide : a case-based approach

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  3. 283

    Fog and fogonomics : challenges and practices of fog computing, communication, networking, strategy, and economics

    Published 2020
    Table of Contents: “…5.5.2 Survivability, Availability, and Reliability 122 -- 5.6 Sovereignty, Privacy, Security, Interoperability, and Management 123 -- 5.6.1 Data Sovereignty 123 -- 5.6.2 Privacy and Security 123 -- 5.6.3 Heterogeneity and Interoperability 124 -- 5.6.4 Monitoring, Orchestration, and Management 124 -- 5.7 Trade-Offs 125 -- 5.8 Conclusion 126 -- References 126 -- 6 Incentive Schemes for User-Provided Fog Infrastructure 129 /George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas -- 6.1 Introduction 129 -- 6.2 Technology and Economic Issues in UPIs 132 -- 6.2.1 Overview of UPI models for Network Connectivity 132 -- 6.2.2 Technical Challenges of Resource Allocation 134 -- 6.2.3 Incentive Issues 135 -- 6.3 Incentive Mechanisms for Autonomous Mobile UPIs 137 -- 6.4 Incentive Mechanisms for Provider-assisted Mobile UPIs 140 -- 6.5 Incentive Mechanisms for Large-Scale Systems 143 -- 6.6 Open Challenges in Mobile UPI Incentive Mechanisms 145 -- 6.6.1 Autonomous Mobile UPIs 145 -- 6.6.1.1 Consensus of the Service Provider 145 -- 6.6.1.2 Dynamic Setting 146 -- 6.6.2 Provider-assisted Mobile UPIs 146 -- 6.6.2.1 Modeling the Users 146 -- 6.6.2.2 Incomplete Market Information 147 -- 6.7 Conclusions 147 -- References 148 -- 7 Fog-Based Service Enablement Architecture 151 /Nanxi Chen, Siobhán Clarke, and Shu Chen -- 7.1 Introduction 151 -- 7.1.1 Objectives and Challenges 152 -- 7.2 Ongoing Effort on FogSEA 153 -- 7.2.1 FogSEA Service Description 156 -- 7.2.2 Semantic Data Dependency Overlay Network 158 -- 7.2.2.1 Creation and Maintenance 159 -- 7.2.2.2 Semantic-Based Service Matchmarking 161 -- 7.3 Early Results 164 -- 7.3.1 Service Composition 165 -- 7.3.1.1 SeDDON Creation in FogSEA 167 -- 7.3.2 Related Work 168 -- 7.3.2.1 Semantic-Based Service Overlays 169 -- 7.3.2.2 Goal-Driven Planning 170 -- 7.3.2.3 Service Discovery 171 -- 7.3.3 Open Issue and Future Work 172 -- References 174 -- 8 Software-Defined Fog Orchestration for IoT Services 179 /Renyu Yang, Zhenyu Wen, David McKee, Tao Lin, Jie Xu, and Peter Garraghan.…”
    Full text (MFA users only)
    Electronic eBook
  4. 284
  5. 285
  6. 286

    Cybersecurity Law, standards and regulations by Schreider, Tari

    Published 2020
    Table of Contents: “…Authors of original encryption algorithms never really thought that governments would want to have access to their en... -- In an effort to bring sanity to the uncontrolled growth of encryption regulations, two important laws have been introduced. …”
    Full text (MFA users only)
    Electronic eBook
  7. 287

    Handbook of safety principles

    Published 2018
    Table of Contents: “…Success or Failure / Ann Enander -- 30.8. Relations to Other Safety Principles / Ann Enander -- References / Ann Enander -- Further Reading / Ann Enander -- 31. …”
    Full text (MFA users only)
    Electronic eBook
  8. 288
  9. 289

    Danforth's obstetrics and gynecology.

    Published 2008
    Full text (MFA users only)
    Electronic eBook
  10. 290

    Mastering Active Directory by Francis, Dishan

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  11. 291

    Artificial intelligence and data mining approaches in security frameworks

    Published 2021
    Table of Contents: “…87 -- 5.1.2 Purpose of Spamming 88 -- 5.1.3 Spam Filters Inputs and Outputs 88 -- 5.2 Content-Based Spam Filtering Techniques 89 -- 5.2.1 Previous Likeness–Based Filters 89 -- 5.2.2 Case-Based Reasoning Filters 89 -- 5.2.3 Ontology-Based E-Mail Filters 90 -- 5.2.4 Machine-Learning Models 90 -- 5.2.4.1 Supervised Learning 90 -- 5.2.4.2 Unsupervised Learning 90 -- 5.2.4.3 Reinforcement Learning 91 -- 5.3 Machine Learning–Based Filtering 91 -- 5.3.1 Linear Classifiers 91 -- 5.3.2 Naïve Bayes Filtering 92 -- 5.3.3 Support Vector Machines 94 -- 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 94 -- 5.4 Performance Analysis 97 -- 5.5 Conclusion 97 -- References 98 -- 6 Artificial Intelligence in the Cyber Security Environment 101 Jaya Jain -- 6.1 Introduction 102 -- 6.2 Digital Protection and Security Correspondences Arrangements 104 -- 6.2.1 Operation Safety and Event Response 105 -- 6.2.2 AI2 105 -- 6.2.2.1 CylanceProtect 105 -- 6.3 Black Tracking 106 -- 6.3.1 Web Security 107 -- 6.3.1.1 Amazon Macie 108 -- 6.4 Spark Cognition Deep Military 110 -- 6.5 The Process of Detecting Threats 111 -- 6.6 Vectra Cognito Networks 112 -- 6.7 Conclusion 115 -- References 115 -- 7 Privacy in Multi-Tenancy Frameworks Using AI 119 Shweta Solanki -- 7.1 Introduction 119 -- 7.2 Framework of Multi-Tenancy 120 -- 7.3 Privacy and Security in Multi-Tenant Base System Using AI 122 -- 7.4 Related Work 125 -- 7.5 Conclusion 125 -- References 126 -- 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 129 Shubhi Srivastava, Ankit Kumar and Shiv Prakash -- 8.1 Introduction 129 -- 8.1.1 Biometric 131 -- 8.1.2 Categories of Biometric 131 -- 8.1.2.1 Advantages of Biometric 132 -- 8.1.3 Significance and Scope 132 -- 8.1.4 Biometric Face Recognition 132 -- 8.1.5 Related Work 136 -- 8.1.6 Main Contribution 136 -- 8.1.7 Novelty Discussion 137 -- 8.2 The Proposed Methodolgy 139 -- 8.2.1 Face Detection Using Haar Algorithm 139 -- 8.2.2 Feature Extraction Using ILBP 141 -- 8.2.3 Dataset 143 -- 8.2.4 Classification Using SVM 143 -- 8.3 Experimental Results 145 -- 8.3.1 Face Detection 146 -- 8.3.2 Feature Extraction 146 -- 8.3.3 Recognize Face Image 147 -- 8.4 Conclusion 151 -- References 152 -- 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using ANN and IoT 155 S K Rajesh Kanna, O. …”
    Full text (MFA users only)
    Electronic eBook
  12. 292

    Software engineering for embedded systems : methods, practical techniques, and applications

    Published 2013
    Table of Contents: “…-- Examples of modeling languages -- The V diagram promise -- So, why would you want to model your embedded system? -- When should you model your embedded system? …”
    Full text (MFA users only)
    Electronic eBook
  13. 293

    XML for DB2 information integration

    Published 2004
    Table of Contents: “…-- 3.4 Creating an XML schema from a database schema -- 3.4.1 The algorithm.…”
    Full text (MFA users only)
    Electronic eBook
  14. 294

    Big Data Analytics with R. by Walkowiak, Simon

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  15. 295

    IBM TotalStorage : SAN product, design, and optimization guide

    Published 2005
    Table of Contents: “…SAN design considerations -- 6.1 What do you want to achieve with a SAN? -- 6.1.1 Storage consolidation -- 6.1.2 High availability solutions -- 6.1.3 LAN-free backup -- 6.1.4 Server-free backup -- 6.1.5 Server-less backup -- 6.1.6 Disaster recovery -- 6.1.7 Flexibility -- 6.1.8 Goals -- 6.1.9 Benefits expected -- 6.1.10 TCO/ROI -- 6.1.11 Investment protection -- 6.2 Existing resources needs and planned growth -- 6.2.1 Collecting the data about existing resources -- 6.2.2 Planning for future needs -- 6.2.3 Platforms and storage -- 6.3 Select the core design for your environment -- 6.3.1 Selecting the topology -- 6.3.2 Scalability -- 6.3.3 Performance -- 6.3.4 Redundancy and resiliency -- 6.4 Host connectivity and Host Bus Adapters -- 6.4.1 Selection criteria -- 6.4.2 Multipathing software -- 6.4.3 Storage sizing -- 6.4.4 Management software -- 6.5 Director class or switch technology -- 6.6 General considerations -- 6.6.1 Ports and ASICs -- 6.6.2 Class F.…”
    Full text (MFA users only)
    Electronic eBook
  16. 296
  17. 297

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook
  18. 298

    Visual Inspection Technology in the Hard Disc Drive Industry. by Muneesawang, Paisarn

    Published 2015
    Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  19. 299

    Fundamentals of Fluid Power Control. by Watton, John

    Published 2009
    Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
    Full text (MFA users only)
    Electronic eBook
  20. 300