Search Results - (((((((kant OR wanti) OR mantis) OR when) OR cantor) OR anne) OR shared) OR hints) algorithms.

  1. 421

    Mathematics of evolution and phylogeny

    Published 2005
    Table of Contents: “…List of Contributors -- 1 The minimum evolution distance-based approach of phylogenetic inference -- 1.1 Introduction -- 1.2 Tree metrics -- 1.2.1 Notation and basics -- 1.2.2 Three-point and four-point conditions -- 1.2.3 Linear decomposition into split metrics -- 1.2.4 Topological matrices -- 1.2.5 Unweighted and balanced averages -- 1.2.6 Alternate balanced basis for tree metrics -- 1.2.7 Tree metric inference in phylogenetics -- 1.3 Edge and tree length estimation -- 1.3.1 The LS approach -- 1.3.2 Edge length formulae -- 1.3.3 Tree length formulae -- 1.3.4 The positivity constraint -- 1.3.5 The balanced scheme of Pauplin -- 1.3.6 Semple and Steel combinatorial interpretation -- 1.3.7 BME: a WLS interpretation -- 1.4 The agglomerative approach -- 1.4.1 UPGMA and WPGMA -- 1.4.2 NJ as a balanced minimum evolution algorithm -- 1.4.3 Other agglomerative algorithms -- 1.5 Iterative topology searching and tree building -- 1.5.1 Topology transformations.; 1.5.2 A fast algorithm for NNIs with OLS -- 1.5.3 A fast algorithm for NNIs with BME -- 1.5.4 Iterative tree building with OLS -- 1.5.5 From OLS to BME -- 1.6 Statistical consistency -- 1.6.1 Positive results -- 1.6.2 Negative results -- 1.6.3 Atteson's safety radius analysis -- 1.7 Discussion -- Acknowledgements -- 2 Likelihood calculation in molecular phylogenetics -- 2.1 Introduction -- 2.2 Markov models of sequence evolution -- 2.2.1 Independence of sites -- 2.2.2 Setting up the basic model -- 2.2.3 Stationary distribution -- 2.2.4 Time reversibility -- 2.2.5 Rate of mutation -- 2.2.6 Probability of sequence evolution on a tree -- 2.3 Likelihood calculation: the basic algorithm -- 2.4 Likelihood calculation: improved models -- 2.4.1 Choosing the rate matrix -- 2.4.2 Among site rate variation -- 2.4.3 Site-specific rate variation -- 2.4.4 Correlated evolution between sites -- 2.5 Optimizing parameters -- 2.5.1 Optimizing continuous parameters -- 2.5.2 Searching for the optimal tree.; 2.5.3 Alternative search strategies -- 2.6 Consistency of the likelihood approach -- 2.6.1 Statistical consistency -- 2.6.2 Identifiability of the phylogenetic models -- 2.6.3 Coping with errors in the model -- 2.7 Likelihood ratio tests -- 2.7.1 When to use the asymptotic x2 distribution -- 2.7.2 Testing a subset of real parameters -- 2.7.3 Testing parameters with boundary conditions -- 2.7.4 Testing trees -- 2.8 Concluding remarks -- Acknowledgements -- 3 Bayesian inference in molecular phylogenetics -- 3.1 The likelihood function and maximum likelihood estimates -- 3.2 The Bayesian paradigm -- 3.3 Prior -- 3.4 Markov chain Monte Carlo -- 3.4.1 Metropolis-Hastings algorithm -- 3.4.2 Single-component Metropolis-Hastings algorithm -- 3.4.3 Gibbs sampler -- 3.4.4 Metropolis-coupled MCMC -- 3.5 Simple moves and their proposal ratios -- 3.5.1 Sliding window using uniform proposal -- 3.5.2 Sliding window using normally distributed proposal.; 3.5.3 Sliding window using normal proposal in multidimensions -- 3.5.4 Proportional shrinking and expanding -- 3.6 Monitoring Markov chains and processing output -- 3.6.1 Diagnosing and validating MCMC algorithms -- 3.6.2 Gelman and Rubin's potential scale reduction statistic -- 3.6.3 Processing output -- 3.7 Applications to molecular phylogenetics -- 3.7.1 Estimation of phylogenies -- 3.7.2 Estimation of species divergence times -- 3.8 Conclusions and perspectives -- Acknowledgements -- 4 Statistical approach to tests involving phylogenies -- 4.1 The statistical approach to phylogenetic inference -- 4.2 Hypotheses testing -- 4.2.1 Null and alternative hypotheses -- 4.2.2 Test statistics -- 4.2.3 Significance and power -- 4.2.4 Bayesian hypothesis testing -- 4.2.5 Questions posed as function of the tree parameter -- 4.2.6 Topology of treespace -- 4.2.7 The data -- 4.2.8 Statistical paradigms -- 4.2.9 Distributions on treespace -- 4.3 Different types of tests involving phylogenies.; 4.3.1 Testing t1 versus t2 -- 4.3.2 Conditional tests -- 4.3.3 Modern Bayesian hypothesis testing -- 4.3.4 Bootstrap tests -- 4.4 Non-parametric multivariate hypothesis testing -- 4.4.1 Multivariate con.dence regions -- 4.5 Conclusions: there are many open problems -- Acknowledgements -- 5 Mixture models in phylogenetic inference -- 5.1 Introduction: models of gene-sequence evolution -- 5.2 Mixture models -- 5.3 Defining mixture models -- 5.3.1 Partitioning and mixture models -- 5.3.2 Discrete-gamma model as a mixture model -- 5.3.3 Combining rate and pattern-heterogeneity -- 5.4 Digression: Bayesian phylogenetic inference -- 5.4.1 Bayesian inference of trees via MCMC -- 5.5 A mixture model combining rate and pattern-heterogeneity -- 5.5.1 Selected simulation results -- 5.6 Application of the mixture model to inferring the phylogeny of the mammals -- 5.6.1 Model testing -- 5.7 Results -- 5.7.1 How many rate matrices to include in the mixture model?…”
    Full text (MFA users only)
    Electronic eBook
  2. 422

    Minor Surgery at a Glance. by Mohan, Helen

    Published 2017
    Table of Contents: “…Part 3 Core surgical knowledge -- 17 Skin incisions -- Scalpels -- Holding the scalpel to make an incision -- Basic principles for incision -- Minor surgical incisions -- Techniques for a good scar -- Electrodissection to incise -- 18 Principles of wound closure -- Plan the skin incision -- Choosing the suture size -- Choosing the suture material -- Suture placement -- Technique for simple interrupted sutures -- When should I use a different suturing technique? …”
    Full text (MFA users only)
    Electronic eBook
  3. 423

    The SMART CYBER ECOSYSTEM FOR SUSTAINABLE DEVELOPMENT.

    Published 2021
    Full text (MFA users only)
    Electronic eBook
  4. 424

    A primer on experiments with mixtures by Cornell, John A., 1941-

    Published 2011
    Table of Contents: “…QuestionsAppendix 2A: Least-Squares Estimation Formula for the Polynomial Coefficients and Their Variances: Matrix Notation; Appendix 2B: Cubic and Quartic Polynomials and Formulas for the Estimates of the Coefficients; Appendix 2C: The Partitioning of the Sources in the Analysis of Variance Table When Fitting the Scheffé Mixture Models; 3. Multiple Constraints on the Component Proportions; 3.1 Lower-Bound Restrictions on Some or All of the Component Proportions; 3.2 Introducing L-Pseudocomponents; 3.3 A Numerical Example of Fitting An L-Pseudocomponent Model.…”
    Full text (MFA users only)
    Electronic eBook
  5. 425

    Missing Data Methods : Cross-Sectional Methods and Applications. by Drukker, David M.

    Published 2011
    Table of Contents: “…NotesAcknowledgment; References; Orthogonality in the single index model; On the estimation of selection models when participation is endogenous and misclassified; Introduction; The model and estimator; Sampling algorithm; Simulated data example; Summary and conclusions; Notes; Acknowledgments; References; summary tables for additional simulations; Process for simulating non -- normal errors; Efficient probit estimation with partially missing covariates; Introduction; Model Specification; Efficient estimators and variances; Testing assumptions and possible modifications; Other models.…”
    Full text (MFA users only)
    Electronic eBook
  6. 426

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
    Full text (MFA users only)
    Electronic eBook
  7. 427

    Moments, Positive Polynomials And Their Applications.

    Published 2009
    Full text (MFA users only)
    Electronic eBook
  8. 428

    Pharmacology in anesthesia practice

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  9. 429

    High performance parallelism pearls : multicore and many-core programming approaches by Reinders, James, Jeffers, Jim (Computer engineer)

    Published 2015
    Table of Contents: “…; The Hyper-Thread Phalanx hand-partitioning technique; A lesson learned; Back to work; Data alignment; Use aligned data when possible; Redundancy can be good for you; The plesiochronous phasing barrier; Let us do something to recover this wasted time; A few "left to the reader" possibilities.…”
    Full text (MFA users only)
    Electronic eBook
  10. 430

    Deep learning with Python : a hands-on introduction by Ketkar, Nikhil

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  11. 431

    Robust and error-free geometric computing by Eberly, Dave

    Published 2020
    Full text (MFA users only)
    Electronic eBook
  12. 432

    New Horizons in Mobile and Wireless Communications, Volume 1 : Radio Interfaces. by Prasad, Ramjee

    Published 2009
    Table of Contents: “…1.3 Research and Standardization Activities Toward New Radio Interfaces1.3.1 European-Funded Research Activities; 1.3.2 Other Activities; 1.4 Preview of the Book; References; Chapter 2 Spectrum-Efficient Radio Interface Technologies; 2.1 Introduction; 2.1.1 Radio Interfaces for Ubiquitous Communications; 2.1.2 OFDM-Based Radio Interfaces in the Scope of Next Generation Systems; 2.1.3 Coexistence and Spectrum Sharing; 2.1.4 Opportunities for Secondary Spectrum Use; 2.1.5 Multiband Transmissions; 2.2 Radio Interfaces Optimized for PANs; 2.2.1 Scenarios and Radio Propagation Models for PANs.…”
    Full text (MFA users only)
    Electronic eBook
  13. 433

    Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications

    Published 2012
    Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
    Full text (MFA users only)
    Electronic eBook
  14. 434

    Computational Seismology : a Practical Introduction. by Igel, Heiner

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  15. 435

    Inventory management : from warehouse to distribution center by Viale, J. David

    Published 1996
    Table of Contents: “…EXERCISE 1: ObservationsTHE BASIC MANUFACTURING EQUATION -- KEY FINANCIAL RATIOS -- EXERCISE 2: Calculating Ratios -- FINANCIAL EVALUATION CHECKLIST -- Balance Sheet -- Income Statement -- Other Issues -- IDENTIFYING SUPPLIERS WITH POTENTIAL CASH-FLOW PROBLEMS -- COSTED BILL OF MATERIALS -- Explanation of Cost Buildup Product F (1 unit) -- Questions to Ask When Reviewing a Costed Bill of Materials -- ALLOCATION OF FACTORY OVERHEAD AND ACTIVITY-BASED COSTING -- Inventory Valuation -- EXERCISE 3: Valuing Inventory -- EXERCISE 4: Choose the Correct Answer…”
    Full text (MFA users only)
    Electronic eBook
  16. 436
  17. 437

    Intelligent IoT for the Digital World : Incorporating 5G Communications and Fog/Edge Computing Technologies. by Yang, Yang

    Published 2021
    Table of Contents: “…1.3.1 Data Collection Technologies -- 1.3.1.1 mmWave -- 1.3.1.2 Massive MIMO -- 1.3.1.3 Software Defined Networks -- 1.3.1.4 Network Slicing -- 1.3.1.5 Time Sensitive Network -- 1.3.1.6 Multi-user Access Control -- 1.3.1.7 Muti-hop Routing Protocol -- 1.3.2 Computing Power Network -- 1.3.2.1 Intelligent IoT Computing Architecture -- 1.3.2.2 Edge and Fog Computing -- 1.3.3 Intelligent Algorithms -- 1.3.3.1 Big Data -- 1.3.3.2 Artificial Intelligence -- 1.4 Typical Applications -- 1.4.1 Environmental Monitoring -- 1.4.2 Public Safety Surveillance -- 1.4.3 Military Communication…”
    Full text (MFA users only)
    Electronic eBook
  18. 438
  19. 439
  20. 440

    Creating E-Learning Games with Unity. by Horachek, David

    Published 2014
    Full text (MFA users only)
    Electronic eBook