Search Results - (((((((ken OR akent) OR santis) OR when) OR cantor) OR anne) OR share) OR hints) algorithms.

Refine Results
  1. 561

    Credit securitizations and derivatives : challenges for the global markets

    Published 2013
    Table of Contents: “…Market Credit Risk Pricing -- Regulation -- Developments in Structured Finance Markets -- Impairments of Asset-Backed Securities and Outstanding Ratings -- Issuance of Asset-backed Securities and Outstanding Volume -- Global CDO Issuance and Outstanding Volume -- PART II CREDIT PORTFOLIO RISK MEASUREMENT -- Mortgage Credit Risk -- Five C's of Credit and Mortgage Credit Risk -- Determinants of Mortgage Default, Loss Given Default and Exposure at Default -- Determinants of Mortgage Default -- Determinants of Mortgage LGD -- Determinants of Mortgage EAD -- Modeling Methods for Default, LGD and EAD -- Model Risk Management -- Credit Portfolio Correlations and Uncertainty -- Introduction -- Gaussian and Semi-Gaussian Single Risk Factor Model -- Individual and Simultaneous Confidence Bounds and Intervals -- Confidence Intervals for Asset Correlations -- Confidence Intervals for Default and Survival Time Correlations -- Confidence Intervals for Default Correlations -- Confidence Intervals for Survival Time Correlations -- Credit Portfolio Correlations with Dynamic Leverage Ratios -- The Hui et al. (2007) Model -- The Method of Images for Constant Coefficients -- The Method of Images for Time-Varying Coefficients -- Modelling Default Correlations in a Two-Firm Model -- Default Correlations -- A Two-Firm Model with Dynamic Leverage Ratios -- Method of Images for Constant Coefficients -- Method of Images for Time-Varying Coefficients -- Alternative Methodologies for General Values -- Numerical Results -- Accuracy -- The Impact of Correlation between Two Firms -- The Impact of Different Credit Quality Paired Firms -- The Impact of Volatilities -- The Impact of Drift Levels -- The Impact of Initial Value of Leverage Ratio Levels -- Impact of Correlation between Firms and Interest Rates -- The Price of Credit-Linked Notes -- A Hierarchical Model of Tail-Dependent Asset Returns -- The Variance Compound Gamma Model -- Multivariate Process for Logarithmic Asset Returns -- Dependence Structure -- Sampling -- Copula Properties -- An Application Example -- Portfolio Setup -- Test Portfolios -- Parameter Setup -- Simulation Results -- Importance Sampling Algorithm -- Conclusions -- Appendix A: The VCG Probability Distribution Function Appendix B: HAC Representation for the VCG Framework -- Monte Carlo Methods for Portfolio Credit Risk -- Modeling Credit Portfolio Losses -- Risk Measures -- Modeling Dependency -- Estimating Risk Measures via Monte Carlo -- Crude Monte Carlo Estimators -- Importance Sampling -- Specific Models -- The Bernoulli Mixture Model -- Factor Models -- Copula Models -- Intensity Models -- An Example Point Process Model -- Appendix A: A Primer on Rare-event Simulation -- Efficiency -- Importance Sampling -- The Choice of g -- Adaptive Importance Sampling -- Importance Sampling for Stochastic Processes -- Credit Portfolio Risk and Diversification -- Introduction -- Model Setup -- Independent Asset Values -- Correlated Asset Values -- Large Portfolio Limit -- Correlated Diffusion -- Correlated GARCH Process -- Applications of the Structural Recovery Rate -- Conclusions -- PART III CREDIT PORTFOLIO RISK SECURITIZATION AND TRANCHING -- Differences in Tranching Methods: Some Results and Implications -- Defining a Tranche -- The Mathematics of Tranching -- PD-based Tranching -- EL-based Tranching -- The EL of a Tranche Necessarily Increases When Either the Attachment Point or the Detachment Point is Decreased -- Upper Bound on Tranche Expected LGD (LGDt) Assumption Given EL-based Tranches -- Skipping of Some Tranches in the EL-based Approach -- Global Structured Finance Rating -- Asset-Backed Securities -- The ABS Structure for the Experiment -- Cash Flow Modeling -- Modeling and Simulating Defaults -- Expected Loss Rating -- Global Sensitivity Analysis -- Elementary Effects -- Variance-based Method -- Global Sensitivity Analysis Results -- Uncertainty Analysis -- Sensitivity Analysis -- Global Rating -- PART IV CREDIT DERIVATIVES -- Analytic Dynamic Factor Copula Model -- Pricing Equations -- One-factor Copula Model -- Multi-period Factor Copula Models -- Calibration -- Dynamic Modeling of Credit Derivatives -- General Model Choice -- Modeling Option Prices -- Modeling Credit Risk -- Portfolio Credit Derivatives -- Modeling Asset Dynamics -- The Market Model -- The Asset-value Model -- Empirical Analysis -- Elementary Data -- Implied Dividends -- Market Dynamics -- Asset Value Model -- Tranche Pricing -- Out-of-time Application -- Pricing and Calibration in Market Models -- Basic notions -- The model -- Modeling Assumptions -- Absence of Arbitrage -- An affine specification -- Pricing -- Calibration -- Calibration Procedure -- Calibration Results -- Appendix A: Computations -- Counterparty Credit Risk and Clearing of Derivatives -- From the Perspective of an Industrial Corporate with a Focus on Commodity Markets -- Credit exposures in commodity business -- Settlement Exposure -- Performance Exposure -- Example of Fixed Price Deal with Performance Exposure -- Example of a Floating Price Deal with Performance Exposure -- General Remarks on Credit Exposure Concepts -- Ex Ante exposure-reducing techniques -- Payment Terms -- Material Adverse Change Clauses -- Master Agreements -- Netting -- Margining -- Close Out Exposure and Threshold -- Ex Ante risk-reducing techniques -- Credit Enhancements in General -- Parent Company Guarantees -- Letters of Credit -- Credit Insurance -- Clearing via a Central Counterparty -- Ex Post risk-reducing techniques -- Factoring -- Novation -- Risk-reducing Trades -- Hedging with CDS -- Hedging with Contingent-CDS -- Hedging with Puts on Equity -- Ex Post work out considerations -- Practical credit risk management and pricing Peculiarities of commodity markets -- Peculiarities of commodity related credit portfolios -- Credit Risk Capital for a commodity related portfolio measured with an extension of CreditMetrics -- CreditRisk+ study: applied to a commodity related credit portfolio -- CDS Industrial Sector Indices, Credit and Liquidity Risk -- The Data -- Methodology and Results -- Preliminary Analysis -- Common Factor Analysis -- Stability of Relations -- Risk Transfer and Pricing of Illiquid Assets with Loan CDS -- Shipping Market -- Loan Credit Default Swaps -- LCDS Pricing -- Modeling LCDS Under the Intensity-based Model -- Valuation Framework for LCDS -- The Structural Approach -- Credit Risk in Shipping Loans -- Valuation of LCDS on Shipping Loans -- Simulation Model -- Numerical Results -- Appendix A: Monte Carlo Parameterization PART V REGULATION -- Regulatory Capital Requirements for Securitizations -- Regulatory Approaches for Securitizations -- Ratings Based Approach (RBA) -- Supervisory Formula Approach (SFA) -- Standardized Approach (SA) -- Post-crisis Revisions to the Basel Framework -- Regulating OTC Derivatives -- The Wall Street Transparency and Accountability Part of the Dodd-Frank Act of 2010 -- Which Derivatives Will Be Affected? …”
    Full text (MFA users only)
    Electronic eBook
  2. 562

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…<i>3</i>Big Data Analytics. 31</p> <p>1.7.4 Visualizing Big Data. 32</p> <p>1.8 Big Data Technology. 32</p> <p>1.8.1 Challenges faced by Big Data technology. 34</p> <p>1.8.1 Heterogeneity and incompleteness. 34</p> <p>1.8.2 Volume and velocity of the Data. 35</p> <p>1.8.3 Data Storage. 35</p> <p>1.8.4 Data Privacy. 36</p> <p>1.9 Big Data Applications. 36</p> <p>1.10 Big Data Use Cases. 37</p> <p>1.9. 1 Healthcare. 37</p> <p>1.9.2 Telecom.. 38</p> <p>1.9.3 Financial Services. 39</p> <p>Chapter 1 refresher: 40</p> <p>Conceptual short Questions with answers. 43</p> <p>Frequently asked Interview questions. 45</p> <p>Chapter Objective. 46</p> <p>Big Data Storage Concepts. 46</p> <p>2.1 Cluster computing. 47</p> <p>2.1.1 Types of cluster. 49</p> <p>2.1.1.1 High availability cluster. 50</p> <p>2.1.1.2 Load balancing cluster. 50</p> <p>2.1.2 Cluster structure. 51</p> <p>2.3 Distribution Models. 53</p> <p>2.3.1 Sharding. 54</p> <p>2.3.2 Data Replication. 56</p> <p>2.3.2.1 Master-Slave model 57</p> <p>2.3.2.2 Peer-to-Peer model 58</p> <p>2.3.3 Sharding and Replication. 59</p> <p>2.4 Distributed file system.. 60</p> <p>2.5 Relational and Non Relational Databases. 61</p> <p>CoursesOffered. 62</p> <p>Figure 2.12 Data divided across multiple related tables. 62</p> <p>2.4.2 RDBMS Databases. 63</p> <p>2.4.3 NoSQL Databases. 63</p> <p>2.4.4 NewSQL Databases. 64</p> <p>2.5 Scaling Up and Scaling Out Storage. 65</p> <p>Chapter 2 refresher. 67</p> <p>Conceptual short questions with answers. 69</p> <p>Chapter Objective. 72</p> <p>3.1 Introduction to NoSQL. 72</p> <p>3.2 Why NoSQL. 72</p> <p>3.3 CAP theorem.. 73</p> <p>3.4 ACID.. 75</p> <p>3.5 BASE. 76</p> <p>3.6 Schemaless Database. 77</p> <p>3.7 NoSQL (Not Only SQL) 77</p> <p>3.7.1 NoSQL Vs RDBMS. 78</p> <p>3.7.2Features of NoSQL database. 79</p> <p>3.7.3Types of NoSQL Technologies. 80</p> <p>3.7.3.1 Key-Value store database. 81</p> <p>3.7.3.2 Column-store database. 82</p> <p>3.7.3.3 Document Oriented Database. 84</p> <p>3.7.3.4 Graph-oriented Database. 86</p> <p>3.7.4 NoSQL Operations. 93</p> <p>3.9 Migrating from RDBMS to NoSQL. 98</p> <p>Chapter 3 refresher. 99</p> <p>Conceptual short questions with answers. 102</p> <p>Chapter Objective. 104</p> <p>4.1 Data Processing. 104</p> <p>4.2 Shared Everything Architecture. 106</p> <p>4.2.1 Symmetric multiprocessing architecture. 107</p> <p>4.2.2 Distributed Shared memory. 108</p> <p>4.3 Shared nothing architecture. 109</p> <p>4.4 Batch Processing. 110</p> <p>4.5 Real-Time Data Processing. 111</p> <p>4.6 Parallel Computing. 112</p> <p>4.7 Distributed Computing. 113</p> <p>4.8 Big Data Virtualization. 113</p> <p>4.8.1 Attributes of Virtualization. 114</p> <p>4.8.1.1 Encapsulation. 115</p> <p>4.8.1.2 Partitioning. 115</p> <p>4.8.1.3 Isolation. 115</p> <p>4.8.2Big Data Server Virtualization. 116</p> <p>4.9 Introduction. 116</p> <p>4.10 Cloud computing types. 118</p> <p>4.11Cloud Services. 120</p> <p>4.12 Cloud Storage. 121</p> <p>4.12.1 Architecture of GFS. 121</p> <p>4.12.1.1 Master. 123</p> <p>4.12.1.2 Client. 123</p> <p>4.13 Cloud Architecture. 127</p> <p>Cloud Challenges. 129</p> <p>Chapter 4 Refresher. 130</p> <p>Conceptual short questions with answers. 133</p> <p>Chapter Objective. 139</p> <p>5.1 Apache Hadoop. 139</p> <p>5.1.1 Architecture of Apache Hadoop. 140</p> <p>5.1.2Hadoop Ecosystem Components Overview.. 140</p> <p>5.2 Hadoop Storage. 142</p> <p>5.2.1HDFS (Hadoop Distributed File System). 142</p> <p>5.2.2Why HDFS?. …”
    Full text (MFA users only)
    Electronic eBook
  3. 563

    Statistics for business by Mariappan, Perumal

    Published 2019
    Full text (MFA users only)
    Electronic eBook
  4. 564

    Disobedient Aesthetics : Surveillance, Bodies, Control by Stagliano, Anthony, 1973-

    Published 2024
    Full text (MFA users only)
    Electronic eBook
  5. 565

    Sigma-Delta Converters. by De la Rosa, José M.

    Published 2018
    Table of Contents: “…6.3.1 Hardware Emulation of CT-Ms on an FPGA 257 -- 6.3.2 GPU-accelerated Computing of CT-Ms 258 -- 6.4 Using Multi-objective Evolutionary Algorithms to Optimize Ms 259 -- 6.4.1 Combining MOEA with SIMSIDES 261 -- 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT-Ms 262 -- 6.5 Summary 269 -- References 269 -- 7 Electrical Design of ??…”
    Full text (MFA users only)
    Electronic eBook
  6. 566
  7. 567

    Visual Inspection Technology in the Hard Disc Drive Industry. by Muneesawang, Paisarn

    Published 2015
    Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  8. 568
  9. 569

    Spread spectrum systems for GNSS and wireless communications by Holmes, Jack K. (Jack Kenneth), 1936-

    Published 2007
    Table of Contents: “…4.3.1 Convolutional Code Encoder Characterization -- 4.3.2 The Transfer Function of a Convolutional Code and the Free Distance -- 4.3.3 Decoding of Convolutional Codes -- 4.3.4 The Viterbi Algorithm -- 4.3.5 Error Probabilities for Viterbi Decoding of Convolutional Codes -- 4.3.6 Sequential Decoding of Convolutional Codes -- 4.3.7 Threshold Decoding of Convolutional Codes -- 4.3.8 Nonbinary Convolutional Codes -- 4.4 ITERATIVELY DECODED CODES -- 4.4.1 Turbo Codes -- 4.4.2 A Serial Concatenated Convolutional Code -- 4.4.3 Serial Concatenated Block Codes -- 4.4.4 Parallel Concatenated Block Codes -- 4.4.5 Low-Density Parity Check Codes -- 4.5 SELECTED RESULTS FOR SOME ERROR CORRECTION CODES -- 4.5.1 Bose, Chaudhuri, and Hocquenghem Codes -- 4.5.2 Reed-Solomon Codes -- 4.5.3 Convolutional Codes with Maximum Free Distance -- 4.5.4 Hard- and Soft-Decision FFH/MFSK with Repeat Coding BER Performance -- 4.6 SHANNON'S CAPACITY THEOREM, THE CHANNEL CODING THEOREM, AND BANDWIDTH EFFICIENCY -- 4.6.1 Shannon's Capacity Theorem -- 4.6.2 Channel Coding Theorem -- 4.6.3 Bandwidth Efficiency -- 4.7 APPLICATIONS OF ERROR CONTROL CODING -- 4.8 SUMMARY -- References -- Selected Bibliography -- Problems -- CHAPTER 5 Carrier Tracking Loops and Frequency Synthesizers -- 5.0 INTRODUCTION -- 5.1 TRACKING OF RESIDUAL CARRIER SIGNALS -- 5.2 PLL FOR TRACKING A RESIDUAL CARRIER COMPONENT -- 5.2.1 The Likelihood Function for Phase Estimation -- 5.2.2 The Maximum-Likelihood Estimation of Carrier Phase -- 5.2.3 Long Loops and Short Loops -- 5.2.4 The Stochastic Differential Equation of Operation -- 5.2.5 The Linear Model of the PLL with Noise -- 5.2.6 The Various Loop Filter Types -- 5.2.7 Transient Response of a Second-Order Loop -- 5.2.8 Steady State Tracking Error When the Phase Error Is Small -- 5.2.9 The Variance of the Linearized PLL Phase Error Due to Thermal Noise.…”
    Full text (MFA users only)
    Electronic eBook
  10. 570

    Liquid surfaces and interfaces : synchrotron X-ray methods by Pershan, Peter S., 1934-

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  11. 571

    Penetration testing : a hands-on introduction to hacking by Weidman, Georgia

    Published 2014
    Table of Contents: “…Metasploit Payloads / Peter Van Eeckhoutte -- Meterpreter / Peter Van Eeckhoutte -- Exploiting WebDAV Default Credentials / Peter Van Eeckhoutte -- Running a Script on the Target Web Server / Peter Van Eeckhoutte -- Uploading a Msfvenom Payload / Peter Van Eeckhoutte -- Exploiting Open phpMyAdmin / Peter Van Eeckhoutte -- Downloading a File with TFTP / Peter Van Eeckhoutte -- Downloading Sensitive Files / Peter Van Eeckhoutte -- Downloading a Configuration File / Peter Van Eeckhoutte -- Downloading the Windows SAM / Peter Van Eeckhoutte -- Exploiting a Buffer Overflow in Third-Party Software / Peter Van Eeckhoutte -- Exploiting Third-Party Web Applications / Peter Van Eeckhoutte -- Exploiting a Compromised Service / Peter Van Eeckhoutte -- Exploiting Open NFS Shares / Peter Van Eeckhoutte -- Summary / Peter Van Eeckhoutte -- 9. …”
    Full text (MFA users only)
    Electronic eBook
  12. 572

    Public safety networks from LTE to 5G by Yarali, Abdulrahman

    Published 2020
    Table of Contents: “…9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4G-5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.…”
    Full text (MFA users only)
    Electronic eBook
  13. 573

    Optimal learning by Powell, Warren B., 1955-

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  14. 574

    Power system monitoring and control by Bevrani, Hassan

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  15. 575