Search Results - (((((((ken OR wantin) OR span) OR wanting) OR cantor) OR anne) OR carter) OR wansing) algorithms.

  1. 181

    Pediatric incontinence : evaluation and clinical management

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  2. 182

    Listed Volatility and Variance Derivatives : a Python-based Guide. by Hilpisch, Yves

    Published 2016
    Table of Contents: “…Chapter 2 Introduction to Python2.1 Python Basics; 2.1.1 Data Types; 2.1.2 Data Structures; 2.1.3 Control Structures; 2.1.4 Special Python Idioms; 2.2 NumPy; 2.3 matplotlib; 2.4 pandas; 2.4.1 pandas DataFrame class; 2.4.2 Input-Output Operations; 2.4.3 Financial Analytics Examples; 2.5 Conclusions; Chapter 3 Model-Free Replication of Variance; 3.1 Introduction; 3.2 Spanning with Options; 3.3 Log Contracts; 3.4 Static Replication of Realized Variance and Variance Swaps; 3.5 Constant Dollar Gamma Derivatives and Portfolios; 3.6 Practical Replication of Realized Variance.…”
    Full text (MFA users only)
    Electronic eBook
  3. 183
  4. 184

    Clinical simulation : operations, engineering and management

    Published 2008
    Table of Contents: “…; 3.5 The Systems Approach to Training; 3.6 Defining the Performance Requirement; 3.7 Cost Versus Value Added; 3.8 Operations Cost; 3.9 Standardization: What is it, and who Wants it?; 3.10 Patients as Training Conditions; 3.11 Equipment as Training Conditions; 3.12 Increase in Training System Cost; 3.13 You as the Leader-Manager; 3.14 Conclusion; Endnotes; Topic II What's In It For Me.…”
    Full text (MFA users only)
    Electronic eBook
  5. 185

    Digitalization of Society and Socio-Political Issues. 1, Digital, Communication, and Culture

    Published 2019
    Table of Contents: “…The Digitalization of Cultural Policies in France 149; Anne BELLON 14.1.…”
    Full text (MFA users only)
    Electronic eBook
  6. 186

    Other geographies : the influences of Michael Watts

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  7. 187
  8. 188

    Oracle SOA Suite 11g Performance Cookbook. by Brasier, Matthew

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  9. 189

    Discovering knowledge in data : an introduction to data mining by Larose, Daniel T.

    Published 2014
    Table of Contents: “…DISCOVERING KNOWLEDGE IN DATA -- Contents -- Preface -- 1 An Introduction to Data Mining -- 1.1 What is Data Mining? -- 1.2 Wanted: Data Miners -- 1.3 The Need for Human Direction of Data Mining -- 1.4 The Cross-Industry Standard Practice for Data Mining -- 1.4.1 Crisp-DM: The Six Phases -- 1.5 Fallacies of Data Mining -- 1.6 What Tasks Can Data Mining Accomplish? …”
    Full text (MFA users only)
    Electronic eBook
  10. 190

    Building Machine Learning Systems with Python. by Richert, Willi

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  11. 191

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook
  12. 192

    Database technology for life sciences and medicine

    Published 2010
    Full text (MFA users only)
    Electronic eBook
  13. 193
  14. 194
  15. 195

    Computational models of argument : Proceedings of COMMA 2012

    Published 2012
    Table of Contents: “…Simari -- Automated Deployment of Argumentation Protocols / Michael Rovatsos -- On Preferred Extension Enumeration in Abstract Argumentation / Katie Atkinson -- Towards Experimental Algorithms for Abstract Argumentation / Katie Atkinson.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  16. 196

    Practical data analysis by Cuesta, Hector

    Published 2013
    Full text (MFA users only)
    Electronic eBook
  17. 197
  18. 198

    Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization by Kim, Kwang-Yong, 1956-, Samad, Abdus, Benini, Ernesto

    Published 2019
    Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
    Full text (MFA users only)
    Electronic eBook
  19. 199
  20. 200

    Designing and Researching of Machines and Technologies for Modern Manufacture.

    Published 2015
    Full text (MFA users only)
    Electronic Conference Proceeding eBook