Search Results - (((((((kent OR akant) OR wantsa) OR markant) OR cantor) OR anne) OR slave) OR hints) algorithms.

Search alternatives:

  1. 81

    Cellular Neural Networks, Multi-scroll Chaos And Synchronization. by Yalin, Mstak E.

    Published 2005
    Table of Contents: “…Engineering applications -- 1.4 Main contributions -- Spatial-temporal pattern formation -- Implementation of n-scroll attractors from generalized Chuas circuits -- Families of scroll grid attractors -- Hyperchaotic n-scroll attractors and scroll maps -- Time-delay synchronization scheme -- Experimental confirmations of synchronization schemes -- Chaotic annealing and coupled chaotic annealing -- True random bit generation from a double scroll attractor -- Image and Video authentication on the CNN-UM -- Chapter 2 Cellular Neural/Nonlinear Networks -- 2.1 CNN -- 2.1.1 1-D CNNs -- 2.1.2 2-D CNNs -- 2.2 CNN models -- 2.2.1 Chua-Yang CNN model -- 2.2.2 State controlled CNN (SC-CNN) model -- 2.2.3 Full-range CNN model -- 2.2.4 Reaction-diffusion CNN model -- 2.2.5 Generalized CNN models -- 2.3 CNN universal machine: a visual microprocessor -- 2.4 New research directions in CNNs -- 2.4.1 Wave computing algorithm -- 2.4.2 Coupled local minimizers -- 2.4.3 Pattern formation on the ACE16k CNN Chip -- 2.4.4 Propagation of autowaves on the inhomogeneous CNN arrays -- 2.5 Conclusion -- Chapter 3 Multi-Scroll Chaotic and Hyperchaotic Attractors -- 3.1 Chuas circuit -- 3.1.1 Chaos in Chuas circuit -- 3.1.2 Realization of Chuas circuit -- 3.2 Generalized Chuas circuit -- 3.2.1 Realization of n-scroll attractors from generalized Chuas circuits -- 3.3 Families of scroll grid attractors -- 3.3.1 A new family of n-scroll attractors -- 3.3.2 2-D scroll grid attractors -- 3.3.3 3-D scroll grid attractors -- 3.3.4 Circuit realizations -- 3.3.5 Alternative realizations -- 3.4 Multi-scroll hyperchaotic attractors -- 3.4.1 Hyperchaotic n-scroll attractors -- 3.4.2 n-Scroll hypercube attractors -- 3.5 Scroll maps from n-scroll attractors -- 3.5.1 1-Scroll and 2-scroll maps -- 3.5.2 Circuit realization of a 1-scroll map -- 3.6 Lure representations -- 3.7 Conclusion -- Chapter 4 Synchronization of Chaotic Lure Systems -- 4.1 Synchronization -- Absolute stability -- 4.2 Master-slave synchronization: autonomous case -- 4.2.1 Full static state error feedback -- 4.2.2 Dynamic output feedback -- 4.3 Robust synchronization -- 4.3.1 Full static state error feedback -- 4.3.2 Dynamic output feedback -- 4.4 Time-delay synchronization scheme -- 4.4.1 Error system for the time-delay synchronization scheme -- 4.4.2 Delay-dependent synchronization criterion -- 4.4.3 Full static state feedback together with time delay -- 4.5 Nonlinear H synchronization: non-autonomous case -- 4.5.1 Full static state error feedback -- 4.5.2 Dynamic output feedback -- 4.6 Robust nonlinear H synchronization -- 4.6.1 Full static state error feedback -- 4.6.2 Dynamic output feedback -- 4.7 Impulsive synchronization -- 4.7.1 State feedback case -- 4.7.2 Measurement feedback case -- 4.8 Controller design -- 4.8.1 Master-slave synchronization -- 4.8.2 Robust synchronization -- 4.8.3 Synchronization with time-delay -- 4.8.4 N.…”
    Full text (MFA users only)
    Electronic eBook
  2. 82

    Limits, Limits Everywhere : the Tools of Mathematical Analysis by Applebaum, David, 1956-

    Published 2012
    Table of Contents: “…Continued Fractions; 9.1 Euclid's Algorithm; 9.2 Rational and Irrational Numbers as Continued Fractions; 10. …”
    Full text (MFA users only)
    Electronic eBook
  3. 83

    Microbiological sensors for the drinking water industry

    Published 2018
    Full text (MFA users only)
    Electronic eBook
  4. 84

    Eat, cook, grow : mixing human-computer interactions with human-food interactions

    Published 2014
    Table of Contents: “…"You don't have to be a gardener to do urban agriculture": understanding opportunities for designing interactive technologies to support urban food production / William Odom -- Augmented agriculture, algorithms, aerospace, and alimentary architectures / Jordan Geiger -- The allure of provenance: tracing food through user-generated production information / Ann Light -- Beyond gardening: a new approach to HCI and urban agriculture / Tad Hirsch -- Hungry for data: metabolic interaction from farm to fork to phenotype / Marc Tuters and Denisa Kera -- Food futures: three provocations to challenge HCI interventions / Greg Hearn and David Lindsay Wright -- Bringing technology to the dining table / Charles Spence -- List of recipes.…”
    Full text (MFA users only)
    Electronic eBook
  5. 85

    A cabinet of philosophical curiosities : a collection of puzzles, oddities, riddles, and dilemmas by Sorensen, Roy A.

    Published 2016
    Table of Contents: “…Cover; Half-Title; Series; Title; Copyright; Contents; Dedication; Introduction; Conform to Confound; Razing Hopes; Hidden Messages in Songs; A Blessed Book Curse; Listen for a Counterexample; Schopenhauer's Intelligence Test; A Knucklehead on My Premises; The Tversky Intelligence Test; A Matter of Life and Death; The Identity of Indiscernibles; Indiscernible Pills; Telling a Clover from a Plover; The Emotional Range of Logicians; A Pebble from the Baths of Caracalla; Assassination Proof; How to Succeed Your Successor; Not All Logicians Are Saints; Lewis Carroll's Peek at Meno's Slave Boy.…”
    Full text (MFA users only)
    Electronic eBook
  6. 86

    Debates in the digital humanities 2016

    Published 2016
    Table of Contents: “…Father Busa Female Punch Card Operatives / Melissa Terras and Julianne Nyhan -- On the Origin of "Hack" and "Yack" / Bethany Nowviskie -- Reflections on a Movement: #transformDH, Growing Up / Moya Bailey, Anne Cong-Huyen, Alexis Lothian, and Amanda Phillips.…”
    Full text (MFA users only)
    Electronic eBook
  7. 87

    Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition. by Zaccone, Giancarlo

    Published 2018
    Table of Contents: “…; Artificial neural networks; The biological neurons; The artificial neuron; How does an ANN learn?; ANNs and the backpropagation algorithm; Weight optimization; Stochastic gradient descent; Neural network architectures; Deep Neural Networks (DNNs); Multilayer perceptron; Deep Belief Networks (DBNs).…”
    Full text (MFA users only)
    Electronic eBook
  8. 88

    Dermatologic principles and practice in oncology : conditions of the skin, hair, and nails in cancer patients

    Published 2013
    Table of Contents: “…Borovicka, Jennifer R.S. Gordon, Ann Cameron Haley, Nicole E. Larson and Dennis P. …”
    Full text (MFA users only)
    Electronic eBook
  9. 89
  10. 90

    Principles of artificial neural networks by Graupe, Daniel

    Published 2013
    Table of Contents: “…Fundamentals of biological neural networks -- ch. 3. Basic principles of ANNs and their early structures. 3.1. Basic principles of ANN design. 3.2. …”
    Full text (MFA users only)
    Electronic eBook
  11. 91
  12. 92

    Frontiers of Artificial Intelligence in Medical Imaging. by Razmjooy, Navid

    Published 2023
    Table of Contents: “…5.5 Electromagnetic field optimization algorithm -- 5.6 Developed electromagnetic field optimization algorithm -- 5.7 Simulation results -- 5.7.1 Image acquisition -- 5.7.2 Pre-processing stage -- 5.7.3 Processing stage -- 5.7.4 Classification -- 5.8 Final evaluation -- 5.9 Conclusions -- References -- Chapter 6 Evaluation of COVID-19 lesion from CT scan slices: a study using entropy-based thresholding and DRLS segmentation -- 6.1 Introduction -- 6.2 Context -- 6.3 Methodology -- 6.3.1 COVID-19 database -- 6.3.2 Image conversion and pre-processing -- 6.3.3 Image thresholding…”
    Full text (MFA users only)
    Electronic eBook
  13. 93
  14. 94

    Power and energy systems III : selected, peer reviewed papers from the 2013 3rd International Conference on Power and Energy Systems (ICPES 2013), November 23-24, Bangkok, Thailand

    Published 2014
    Table of Contents: “…Appropriate Electric Energy Conservation Measures for Big Mosques in Riyadh CityBayesian Algorithm Based on Airborne Power Supply System; Study on the Cooling System of Super-Capacitors for Hybrid Electric Vehicle; A Charging Management of Electric Vehicles Based on Campus Survey Data; Back-EMF Position Detection Technology for Brushless DC Motor; Stress State of Turbine Blade Root and Rim Considering Manufacturing Variations; Analysis on a Gas Turbine Sealing Disk Structure and Material Strength; A Kind of Adjustable Electric Heating Pipe Power Electrode Preparation Equipment.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  15. 95

    Mathematical Methods in Interdisciplinary Sciences. by Chakraverty, Snehashish

    Published 2020
    Table of Contents: “…1.2.2.1 Architecture of Single-Layer LgNN Model -- 1.2.2.2 Training Algorithm of Laguerre Neural Network (LgNN) -- 1.2.2.3 Gradient Computation of LgNN -- 1.3 Methodology for Solving a System of Fredholm Integral Equations of Second Kind -- 1.3.1 Algorithm -- 1.4 Numerical Examples and Discussion -- 1.4.1 Differential Equations and Applications -- 1.4.2 Integral Equations -- 1.5 Conclusion -- References -- Chapter 2 Deep Learning in Population Genetics: Prediction and Explanation of Selection of a Population -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Dataset Description…”
    Full text (MFA users only)
    Electronic eBook
  16. 96

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
    Full text (MFA users only)
    Electronic eBook
  17. 97

    Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications

    Published 2012
    Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
    Full text (MFA users only)
    Electronic eBook
  18. 98

    Energy storage for sustainable microgrid by Gao, David Wenzhong

    Published 2015
    Table of Contents: “…1.2.4.2 Weighted Least Squares Estimation1.2.4.3 Newton-Raphson Algorithm; 1.3 Microgrid Control Methods; 1.3.1 PQ Control; 1.3.2 V/f Control; 1.3.3 Droop Control; 1.3.3.1 Active Power Control; 1.3.3.2 Voltage Control; 1.4 Control Architectures in Microgrids; 1.4.1 Master-Slave Control; 1.4.2 Peer-to-peer Control; 1.4.3 Hierarchy Control; 1.5 Microgrid Protection; 1.6 Three-Phase Circuit for Grid-Connected DG; 1.6.1 LC Filter; 1.6.2 Isolation Transformer; 1.7 Energy Storage Technology in Renewable Microgrids; 1.7.1 Batteries; 1.7.1.1 Lead-Acid Batteries; 1.7.1.2 Lithium-Ion Batteries.…”
    Full text (MFA users only)
    Electronic eBook
  19. 99

    Pediatric incontinence : evaluation and clinical management

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  20. 100

    CUDA Application Design and Development. by Farber, Rob

    Published 2011
    Table of Contents: “…Multiple GPUs -- Explicit Synchronization -- Implicit Synchronization -- The Unified Virtual Address Space -- A Simple Example -- Profiling Results -- Out-of-Order Execution with Multiple Streams -- Tip for Concurrent Kernel Execution on the Same GPU -- Atomic Operations for Implicitly Concurrent Kernels -- Tying Data to Computation -- Manually Partitioning Data -- Mapped Memory -- How Mapped Memory Works -- Summary -- 8 CUDA for All GPU and CPU Applications -- Pathways from CUDA to Multiple Hardware Backends -- The PGI CUDA x86 Compiler -- The PGI CUDA x86 Compiler -- An x86 core as an SM -- The NVIDIA NVCC Compiler -- Ocelot -- Swan -- MCUDA -- Accessing CUDA from Other Languages -- SWIG -- Copperhead -- EXCEL -- MATLAB -- Libraries -- CUBLAS -- CUFFT -- MAGMA -- phiGEMM Library -- CURAND -- Summary -- 9 Mixing CUDA and Rendering -- OpenGL -- GLUT -- Mapping GPU Memory with OpenGL -- Using Primitive Restart for 3D Performance -- Introduction to the Files in the Framework -- The Demo and Perlin Example Kernels -- The Demo Kernel -- The Demo Kernel to Generate a Colored Sinusoidal Surface -- Perlin Noise -- Using the Perlin Noise Kernel to Generate Artificial Terrain -- The simpleGLmain.cpp File -- The simpleVBO.cpp File -- The callbacksVBO.cpp File -- Summary -- 10 CUDA in a Cloud and Cluster Environments -- The Message Passing Interface (MPI) -- The MPI Programming Model -- The MPI Communicator -- MPI Rank -- Master-Slave -- Point-to-Point Basics -- How MPI Communicates -- Bandwidth -- Balance Ratios -- Considerations for Large MPI Runs -- Scalability of the Initial Data Load -- Using MPI to Perform a Calculation -- Check Scalability -- Cloud Computing -- A Code Example -- Data Generation -- Summary -- 11 CUDA for Real Problems -- Working with High-Dimensional Data -- PCA/NLPCA -- Multidimensional Scaling -- K-Means Clustering.…”
    Full text (MFA users only)
    Electronic eBook