Search Results - (((((((kent OR arts) OR wikant) OR data) OR cantor) OR anne) OR walted) OR canton) algorithms.

Search alternatives:

  1. 121

    How to think about algorithms by Edmonds, Jeff, 1963-

    Published 2008
    Table of Contents: “…Iterative algorithms: measures of progress and loop invariants -- Examples using more-of-the-input loop invariants -- Abstract data types -- Narrowing the search space: binary search -- Iterative sorting algorithms -- Euclid's GCD algorithm -- The loop invariant for lower bounds -- Abstractions, techniques, and theory -- Some simple examples of recursive algorithms -- Recursion on trees -- Recursive images -- Parsing with context-free grammars -- Definition of optimization problems -- Graph search algorithms -- Network flows and linear programming -- Greedy algorithms -- Recursive backtracking -- Dynamic programming algorithms -- Examples of dynamic programs -- Reductions and NP-completeness -- Randomized algorithms -- Existential and universal quantifiers -- Time complexity -- Logarithms and exponentials -- Asymptotic growth -- Adding-made-easy approximations -- Recurrence relations -- A formal proof of correctness.…”
    Full text (MFA users only)
    Electronic eBook
  2. 122

    Electronic and Algorithmic Trading Technology : the Complete Guide. by Kim, Kendall

    Published 2007
    Table of Contents: “…Front Cover; Electronic and Algorithmic Trading Technology; Copyright Page; Dedication Page; Contents; About the Author; Series Preface; Introduction; Chapter 1: Overview of Electronic and Algorithmic Trading; Chapter 2: Automating Trade and Order Flow; Chapter 3: The Growth of Program and Algorithmic Trading; Chapter 4: Alternative Execution Venues; Chapter 5: Algorithmic Strategies; Chapter 6: Algorithmic Feasibility and Limitations; Cahpter 7: Electronic Trading Networks; Chapter 8: Effective Data Management; Chapter 9: Minimizing Execution Costs; Chapter 10: Transaction Cost Research.…”
    Full text (MFA users only)
    Electronic eBook
  3. 123

    Graph Algorithms and Applications 2 : Solid-Electrolyte Interphase. by Liotta, Giuseppe

    Published 2004
    Table of Contents: “…Difference Metrics for Interactive Orthogonal Graph Drawing Algorithms Techniques for the Refinement of Orthogonal Graph Drawings ; A Split & Push Approach to 3D Orthogonal Drawing ; Using Graph Layout to Visualize Train Interconnection Data.…”
    Full text (MFA users only)
    Electronic eBook
  4. 124

    Graph algorithms and applications 4

    Published 2006
    Table of Contents: “…Special issue on selected papers from the Seventh International Workshop on Algorithms and Data Structures, WADS 2001 / Guest editor(s): Giuseppe Liotta and Ioannis G. …”
    Full text (MFA users only)
    Electronic eBook
  5. 125

    Evolutionary computation in gene regulatory network research

    Published 2016
    Table of Contents: “…I: Preliminaries -- A Brief Introduction to Evolutionary and other Nature-Inspired Algorithms / Nasimul Noman and Hitoshi Iba -- Mathematical Models and Computational Methods for Inference of Genetic Networks / Tatsuya Akutsu -- Gene Regulatory Networks: Real Data Sources and Their Analysis / Yuji Zhang -- II: EAs for Gene Expression Data Analysis and GRN Reconstruction -- Biclustering Analysis of Gene Expression Data Using Evolutionary Algorithms / Alan Wee-Chung Liew -- Inference of Vohradský's Models of Genetic Networks Using a Real-Coded Genetic Algorithm / Shuhei Kimura -- GPU-Powered Evolutionary Design of Mass-Action-Based Models of Gene Regulation / Marco S. …”
    Full text (MFA users only)
    Electronic eBook
  6. 126

    Analysis of biological networks

    Published 2008
    Full text (MFA users only)
    Electronic eBook
  7. 127

    Optimization of Computer Networks : Modeling and Algorithms: a Hands-On Approach. by Pavón Mariño, Pablo

    Published 2016
    Table of Contents: “…Chapter 9: Primal Gradient Algorithms -- 9.1 Introduction -- 9.2 Penalty Methods -- 9.3 Adaptive Bifurcated Routing -- 9.4 Congestion Control using Barrier Functions -- 9.5 Persistence Probability Adjustment in MAC Protocols -- 9.6 Transmission Power Assignment in Wireless Networks -- 9.7 Notes and Sources -- 9.8 Exercises -- References -- Chapter 10: Dual Gradient Algorithms -- 10.1 Introduction -- 10.2 Adaptive Routing in Data Networks -- 10.3 Backpressure (Center-Free) Routing -- 10.4 Congestion Control -- 10.5 Decentralized Optimization of CSMA Window Sizes -- 10.6 Notes and Sources…”
    Full text (MFA users only)
    Electronic eBook
  8. 128

    Metaheuristic optimization for the design of automatic control laws by Sandou, Guillaume

    Published 2013
    Table of Contents: “…Motivations to use metaheuristic algorithms -- 1.3. Organization of the book -- Chapter 2. …”
    Full text (MFA users only)
    Electronic eBook
  9. 129

    Digital Video and HD : Algorithms and Interfaces. by Poynton, Charles

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  10. 130
  11. 131

    Practical Algorithms for 3D Computer Graphics, Second Edition. by Ferguson, R. Stuart (Robin Stuart), 1953-

    Published 2013
    Table of Contents: “…Basic theory and mathematical results; 3. Data structures for 3D graphics; 4. Basic visualization; 5. …”
    Full text (MFA users only)
    Electronic eBook
  12. 132
  13. 133

    The data imperative : how digitalization is reshaping management, organizing, and work by Schildt, Henri

    Published 2020
    Table of Contents: “…Cover -- The Data Imperative: How Digitalization is Reshaping Management, Organizing, and Work -- Copyright -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- List of Boxes -- Chapter 1: Digital Transformation -- From Business Computing to the Digital Transformation -- Ubiquity and the Value of Digital Data in Business -- From Human Routines to Algorithmic Processing -- Digitalization as a Change in the Mindset and Norms of Management -- Data as a Management Priority -- Outline of the Chapters -- Digital Transformation and the Future of Work…”
    Full text (MFA users only)
    Electronic eBook
  14. 134
  15. 135

    Data mining : practical machine learning tools and techniques by Witten, I. H. (Ian H.), Frank, Eibe, Hall, Mark A. (Mark Andrew)

    Published 2011
    Table of Contents: “…-- Input : concepts, instances, and attributes -- Output : knowledge representation -- Algorithms : the basic methods -- Credibility : evaluating what's been learned -- Implementations : real machine learning schemes -- Data transformation -- Ensemble learning -- Moving on : applications and beyond -- Introduction to Weka -- The explorer -- The knowledge flow interface -- The experimenter -- The command-line interface -- Embedded machine learning -- Writing new learning schemes -- Tutorial exercises for the weka explorer.…”
    Full text (MFA users only)
    Electronic eBook
  16. 136

    Data Love : the Seduction and Betrayal of Digital Technologies. by Simanowski, Roberto

    Published 2016
    Table of Contents: “…Data-Mining Business; 7. Social Engineers Without a Cause; 8. …”
    Full text (MFA users only)
    Electronic eBook
  17. 137

    Data Mining : a Tutorial-Based Primer, Second Edition. by Roiger, Richard J.

    Published 2017
    Table of Contents: “…3.2 A BASIC COVERING RULE ALGORITHM3.3 GENERATING ASSOCIATION RULES; 3.3.1 Confidence and Support; 3.3.2 Mining Association Rules: An Example; 3.3.3 General Considerations; 3.4 THE K-MEANS ALGORITHM; 3.4.1 An Example Using K-means; 3.4.2 General Considerations; 3.5 GENETIC LEARNING; 3.5.1 Genetic Algorithms and Supervised Learning; 3.5.2 General Considerations; 3.6 CHOOSING A DATA MINING TECHNIQUE; 3.7 CHAPTER SUMMARY; 3.8 KEY TERMS; Section II: Tools for Knowledge Discovery; Chapter 4. …”
    Full text (MFA users only)
    Electronic eBook
  18. 138

    Data Mining.

    Published 2011
    Table of Contents: “…-- Decision Tree Induction -- GINI Index -- Entropy -- Misclassification Measure -- Practical Issues Regarding Decision Trees -- Predictive Accuracy -- STOP Condition for Split -- Pruning Decision Trees -- Extracting Classification Rules from Decision Trees -- Advantages of Decision Trees -- Data Mining Techniques and Models -- Data Mining Methods -- Bayesian Classifier -- Artificial Neural Networks -- Perceptron -- Types of Artificial Neural Networks -- Probabilistic Neural Networks -- Some Neural Networks Applications -- Support Vector Machines -- Association Rule Mining -- Rule-Based Classification -- k-Nearest Neighbor -- Rough Sets -- Clustering -- Hierarchical Clustering -- Non-hierarchical/Partitional Clustering -- Genetic Algorithms -- Components of GAs -- Architecture of GAs -- Applications -- Classification Performance Evaluation -- Costs and Classification Accuracy -- ROC (Receiver Operating Characteristic) Curve -- Statistical Methods for Comparing Classifiers -- References -- Index.…”
    Full text (MFA users only)
    Electronic eBook
  19. 139

    Data Science : The Executive Summary - a Technical Book for Non-Technical Professionals. by Cady, Field

    Published 2020
    Table of Contents: “…2.1.5 What Data Scientists Don't (Necessarily) Do -- 2.1.5.1 Working Without Data -- 2.1.5.2 Working with Data that Can't Be Interpreted -- 2.1.5.3 Replacing Subject Matter Experts -- 2.1.5.4 Designing Mathematical Algorithms -- 2.2 Data Science in an Organization -- 2.2.1 Types of Value Added -- 2.2.1.1 Business Insights -- 2.2.1.2 Intelligent Products -- 2.2.1.3 Building Analytics Frameworks -- 2.2.1.4 Offline Batch Analytics -- 2.2.2 One-Person Shops and Data Science Teams -- 2.2.3 Related Job Roles -- 2.2.3.1 Data Engineer -- 2.2.3.2 Data Analyst -- 2.2.3.3 Software Engineer…”
    Full text (MFA users only)
    Electronic eBook
  20. 140

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook