Search Results - (((((((kent OR mantis) OR wantin) OR markant) OR cantor) OR anne) OR shared) OR hints) algorithms.

Search alternatives:

  1. 241

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook
  2. 242

    Computational models of argument : Proceedings of COMMA 2012

    Published 2012
    Table of Contents: “…Simari -- Automated Deployment of Argumentation Protocols / Michael Rovatsos -- On Preferred Extension Enumeration in Abstract Argumentation / Katie Atkinson -- Towards Experimental Algorithms for Abstract Argumentation / Katie Atkinson.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  3. 243

    Banking and finance issues in emerging markets.

    Published 2018
    Full text (MFA users only)
    Electronic eBook
  4. 244

    Symbolic computation and education

    Published 2007
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  5. 245

    Informatics for Health by Randell, R.

    Published 2017
    Table of Contents: “…Connected and Digital Health -- Design and Validation of a Platform to Evaluate mHealth Apps -- Reasoning and Data Representation in a Health and Lifestyle Support System -- Feasibility of Representing a Danish Microbiology Model Using FHIR -- Establishment of Requirements and Methodology for the Development and Implementation of GreyMatters, a Memory Clinic Information System -- Nurses' Perspectives on In-Home Monitoring of Elderlies's Motion Pattern -- Monitoring Activities Related to Medication Adherence in Ambient Assisted Living Environments -- Design, Implementation and Operation of a Reading Center Platform for Clinical Studies -- Web Validation Service for Ensuring Adherence to the DICOM Standard -- A Decision Support System for Cardiac Disease Diagnosis Based on Machine Learning Methods -- Severity Summarization and Just in Time Alert Computation in mHealth Monitoring -- Towards Safe and Efficient Child Primary Care -- Gaps in the Use of Unique Identifiers in Europe -- Why Are Children's Interests Invisible in European National E-Health Strategies? -- Shared Decision Making via Personal Health Record Technology for Routine Use of Diabetic Youth: A Study Protocol -- A Medication Reminder Mobile App: Does It Work for Different Age Ranges -- Internet of Things in Health Trends Through Bibliometrics and Text Mining -- Developing the Safety Case for MediPi: An Open-Source Platform for Self Management -- UK Health and Social Care Case Studies: Iterative Technology Development -- 2. …”
    Full text (MFA users only)
    Electronic eBook
  6. 246
  7. 247

    Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization by Kim, Kwang-Yong, 1956-, Samad, Abdus, Benini, Ernesto

    Published 2019
    Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
    Full text (MFA users only)
    Electronic eBook
  8. 248

    Digital information ecosystems : smart press by Augey, Dominique

    Published 2019
    Table of Contents: “…The problem of revenue sharing between media and social networks; 6.2. The social network eco-system; 6.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  9. 249

    Binary decision diagrams and extensions for system reliability analysis by Xing, Liudong

    Published 2015
    Table of Contents: “…7.5 Applications to Phased-Mission Systems -- 7.5.1 Mini-Component Concept -- 7.5.2 Extended SEA Method for PMS -- 7.5.3 An Illustrative Example -- 7.6 Summary -- 8 Shared Decision Diagrams -- 8.1 Multi-Rooted Decision Diagrams -- 8.2 Multi-Terminal Decision Diagrams -- 8.3 Performance Study on Multi-State Systems -- 8.3.1 Example Analyses -- 8.3.2 Benchmark Studies -- 8.4 Application to Phased-Mission Systems -- 8.4.1 PMS Analysis Using MDDs -- 8.4.1.1 Step 1-Variable Encoding -- 8.4.1.2 Step 2-Input Variable Ordering -- 8.4.1.3 Step 3-PMS MDD Generation -- 8.4.1.4 Step 4-PMS MDD Evaluation -- 8.4.2 An Illustrative Example -- 8.5 Application to Multi-State k-out-of-n Systems -- 8.5.1 Multi-State k-out-of-n System Analysis Using MDDs -- 8.5.1.1 Step 1- BDDkl Generation -- 8.5.1.2 Step 2- MDDkl Generation -- 8.5.1.3 Step 3- MDDSj Generation -- 8.5.1.4 Step 4-System MDDSj Evaluation -- 8.5.2 An Illustrative Example -- 8.6 Importance Measures -- 8.6.1 Capacity Networks and Reliability Modeling -- 8.6.2 Composite Importance Measures (Type 1) -- 8.6.2.1 General CIMs -- 8.6.2.2 Alternative CIMs -- 8.6.3 Computing CIMs Using MDD -- 8.6.4 An Illustrative Example -- 8.7 Failure Frequency Based Measures -- 8.8 Summary -- Conclusions -- References -- Index -- EULA.…”
    Full text (MFA users only)
    Electronic eBook
  10. 250

    Advanced security solutions for multimedia

    Published 2021
    Full text (MFA users only)
    Electronic eBook
  11. 251

    Security, Privacy and Reliability in Computer Communications and Networks. by Sha, Kewei

    Published 2016
    Table of Contents: “…Front Cover -- Half Title Page -- RIVER PUBLISHERS SERIES IN INNOVATION AND CHANGE IN EDUCATION -- CROSS-CULTURAL PERSPECTIVE -- Title Page -- Security, Privacy and Reliability in Computer Communications and Networks -- Copyright Page -- Contents -- Preface -- Acknowledgments -- List of Contributors -- List of Figures -- List of Tables -- List of Algorithms -- List of Abbreviations -- PART I -- Privacy -- Chapter 1 -- Distributed Beamforming Relay Selection to Increase Base Station Anonymity in Wireless Ad Hoc Networks -- Abstract -- 1.1 Introduction -- 1.2 Anonymity Definition, Metrics, and Contemporary Measures -- 1.2.1 Anonymity Definition and Assessment -- 1.2.2 Antitraffic Analysis Measures -- 1.3 System Assumptions and Attack Model -- 1.3.1 Network Model -- 1.3.2 Adversary Model -- 1.3.3 Evidence Theory and Belief Metric -- 1.4 Distributed Beamforming to Increase the BS Anonymity -- 1.4.1 Overview of the DiBAN Protocol -- 1.4.2 DiBAN Illustrative Example -- 1.4.3 DiBAN Energy Analysis -- 1.5 Distributed Beamforming Relay Selection Approach -- 1.6 Validation Experiments -- 1.6.1 Simulation Environment -- 1.6.2 Simulation Results -- 1.7 Conclusions and FutureWork -- Appendix I: Numerical Evidence Theory Belief Calculation Example -- References -- Chapter 2 -- A Privacy-Preserving and Efficient Information Sharing Scheme for VANET Secure Communication -- Abstract -- 2.1 Introduction -- 2.2 Related Works -- 2.3 System Model and Preliminaries -- 2.3.1 Network Model -- 2.3.2 Attack Model -- 2.3.3 Security Requirements -- 2.4 The Proposed PETS Scheme -- 2.4.1 Scheme Overview -- 2.4.2 System Initiation -- 2.4.3 Vehicle-RSU Key Agreement -- 2.4.4 Traffic Information Collection and Aggregation -- 2.4.5 Traffic Jam Message Propagation -- 2.5 Security Analysis -- 2.6 Performance Evaluation -- 2.6.1 Traffic Information Sending/Collection Overhead.…”
    Full text (MFA users only)
    Electronic eBook
  12. 252

    SCADA Security : Machine Learning Concepts for Intrusion Detection and Prevention. by Almalawi, Abdulmohsen

    Published 2020
    Table of Contents: “…CHAPTER 4 Efficient k-Nearest Neighbour Approach Based on Various-Widths Clustering -- 4.1 INTRODUCTION -- 4.2 RELATED WORK -- 4.3 THE kNNVWC APPROACH -- 4.3.1 FWC Algorithm and Its Limitations -- 4.3.2 Various-Widths Clustering -- 4.3.3 The k-NN Search -- 4.4 EXPERIMENTAL EVALUATION -- 4.4.1 Data Sets -- 4.4.2 Performance Metrics -- 4.4.3 Impact of Cluster Size -- 4.4.4 Baseline Methods -- 4.4.5 Distance Metric -- 4.4.6 Complexity Metrics -- 4.5 CONCLUSION -- CHAPTER 5 SCADA Data-Driven Anomaly Detection -- 5.1 INTRODUCTION -- 5.2 SDAD APPROACH -- 5.2.1 Observation State of SCADA Points…”
    Full text (MFA users only)
    Electronic eBook
  13. 253

    The Johns Hopkins guide to digital media

    Published 2014
    Table of Contents: “…Berry -- Cognitive implications of new media / Anne Mangen and Jean-Luc Velay -- Collaborative narrative / Scott Rettberg -- Collective intelligence / John Duda -- Combinatory and automatic text generation / Philippe Bootz and Christopher Funkhouser -- Computational linguistics / Inderjeet Mani -- Conceptual writing / Darren Wershler -- Copyright / Benjamin J. …”
    Book
  14. 254
  15. 255

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…<i>3</i>Big Data Analytics. 31</p> <p>1.7.4 Visualizing Big Data. 32</p> <p>1.8 Big Data Technology. 32</p> <p>1.8.1 Challenges faced by Big Data technology. 34</p> <p>1.8.1 Heterogeneity and incompleteness. 34</p> <p>1.8.2 Volume and velocity of the Data. 35</p> <p>1.8.3 Data Storage. 35</p> <p>1.8.4 Data Privacy. 36</p> <p>1.9 Big Data Applications. 36</p> <p>1.10 Big Data Use Cases. 37</p> <p>1.9. 1 Healthcare. 37</p> <p>1.9.2 Telecom.. 38</p> <p>1.9.3 Financial Services. 39</p> <p>Chapter 1 refresher: 40</p> <p>Conceptual short Questions with answers. 43</p> <p>Frequently asked Interview questions. 45</p> <p>Chapter Objective. 46</p> <p>Big Data Storage Concepts. 46</p> <p>2.1 Cluster computing. 47</p> <p>2.1.1 Types of cluster. 49</p> <p>2.1.1.1 High availability cluster. 50</p> <p>2.1.1.2 Load balancing cluster. 50</p> <p>2.1.2 Cluster structure. 51</p> <p>2.3 Distribution Models. 53</p> <p>2.3.1 Sharding. 54</p> <p>2.3.2 Data Replication. 56</p> <p>2.3.2.1 Master-Slave model 57</p> <p>2.3.2.2 Peer-to-Peer model 58</p> <p>2.3.3 Sharding and Replication. 59</p> <p>2.4 Distributed file system.. 60</p> <p>2.5 Relational and Non Relational Databases. 61</p> <p>CoursesOffered. 62</p> <p>Figure 2.12 Data divided across multiple related tables. 62</p> <p>2.4.2 RDBMS Databases. 63</p> <p>2.4.3 NoSQL Databases. 63</p> <p>2.4.4 NewSQL Databases. 64</p> <p>2.5 Scaling Up and Scaling Out Storage. 65</p> <p>Chapter 2 refresher. 67</p> <p>Conceptual short questions with answers. 69</p> <p>Chapter Objective. 72</p> <p>3.1 Introduction to NoSQL. 72</p> <p>3.2 Why NoSQL. 72</p> <p>3.3 CAP theorem.. 73</p> <p>3.4 ACID.. 75</p> <p>3.5 BASE. 76</p> <p>3.6 Schemaless Database. 77</p> <p>3.7 NoSQL (Not Only SQL) 77</p> <p>3.7.1 NoSQL Vs RDBMS. 78</p> <p>3.7.2Features of NoSQL database. 79</p> <p>3.7.3Types of NoSQL Technologies. 80</p> <p>3.7.3.1 Key-Value store database. 81</p> <p>3.7.3.2 Column-store database. 82</p> <p>3.7.3.3 Document Oriented Database. 84</p> <p>3.7.3.4 Graph-oriented Database. 86</p> <p>3.7.4 NoSQL Operations. 93</p> <p>3.9 Migrating from RDBMS to NoSQL. 98</p> <p>Chapter 3 refresher. 99</p> <p>Conceptual short questions with answers. 102</p> <p>Chapter Objective. 104</p> <p>4.1 Data Processing. 104</p> <p>4.2 Shared Everything Architecture. 106</p> <p>4.2.1 Symmetric multiprocessing architecture. 107</p> <p>4.2.2 Distributed Shared memory. 108</p> <p>4.3 Shared nothing architecture. 109</p> <p>4.4 Batch Processing. 110</p> <p>4.5 Real-Time Data Processing. 111</p> <p>4.6 Parallel Computing. 112</p> <p>4.7 Distributed Computing. 113</p> <p>4.8 Big Data Virtualization. 113</p> <p>4.8.1 Attributes of Virtualization. 114</p> <p>4.8.1.1 Encapsulation. 115</p> <p>4.8.1.2 Partitioning. 115</p> <p>4.8.1.3 Isolation. 115</p> <p>4.8.2Big Data Server Virtualization. 116</p> <p>4.9 Introduction. 116</p> <p>4.10 Cloud computing types. 118</p> <p>4.11Cloud Services. 120</p> <p>4.12 Cloud Storage. 121</p> <p>4.12.1 Architecture of GFS. 121</p> <p>4.12.1.1 Master. 123</p> <p>4.12.1.2 Client. 123</p> <p>4.13 Cloud Architecture. 127</p> <p>Cloud Challenges. 129</p> <p>Chapter 4 Refresher. 130</p> <p>Conceptual short questions with answers. 133</p> <p>Chapter Objective. 139</p> <p>5.1 Apache Hadoop. 139</p> <p>5.1.1 Architecture of Apache Hadoop. 140</p> <p>5.1.2Hadoop Ecosystem Components Overview.. 140</p> <p>5.2 Hadoop Storage. 142</p> <p>5.2.1HDFS (Hadoop Distributed File System). 142</p> <p>5.2.2Why HDFS?. …”
    Full text (MFA users only)
    Electronic eBook
  16. 256
  17. 257
  18. 258
  19. 259

    AI and the future of banking by Boobier, Tony, 1956-

    Published 2020
    Full text (MFA users only)
    Electronic eBook
  20. 260