Search Results - (((((((kent OR wants) OR wanting) OR makant) OR cantor) OR anne) OR shared) OR hints) algorithms.

Search alternatives:

  1. 301

    Informatics for Health by Randell, R.

    Published 2017
    Table of Contents: “…Connected and Digital Health -- Design and Validation of a Platform to Evaluate mHealth Apps -- Reasoning and Data Representation in a Health and Lifestyle Support System -- Feasibility of Representing a Danish Microbiology Model Using FHIR -- Establishment of Requirements and Methodology for the Development and Implementation of GreyMatters, a Memory Clinic Information System -- Nurses' Perspectives on In-Home Monitoring of Elderlies's Motion Pattern -- Monitoring Activities Related to Medication Adherence in Ambient Assisted Living Environments -- Design, Implementation and Operation of a Reading Center Platform for Clinical Studies -- Web Validation Service for Ensuring Adherence to the DICOM Standard -- A Decision Support System for Cardiac Disease Diagnosis Based on Machine Learning Methods -- Severity Summarization and Just in Time Alert Computation in mHealth Monitoring -- Towards Safe and Efficient Child Primary Care -- Gaps in the Use of Unique Identifiers in Europe -- Why Are Children's Interests Invisible in European National E-Health Strategies? -- Shared Decision Making via Personal Health Record Technology for Routine Use of Diabetic Youth: A Study Protocol -- A Medication Reminder Mobile App: Does It Work for Different Age Ranges -- Internet of Things in Health Trends Through Bibliometrics and Text Mining -- Developing the Safety Case for MediPi: An Open-Source Platform for Self Management -- UK Health and Social Care Case Studies: Iterative Technology Development -- 2. …”
    Full text (MFA users only)
    Electronic eBook
  2. 302
  3. 303

    Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization by Kim, Kwang-Yong, 1956-, Samad, Abdus, Benini, Ernesto

    Published 2019
    Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
    Full text (MFA users only)
    Electronic eBook
  4. 304

    Digital information ecosystems : smart press by Augey, Dominique

    Published 2019
    Table of Contents: “…The problem of revenue sharing between media and social networks; 6.2. The social network eco-system; 6.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  5. 305
  6. 306

    Binary decision diagrams and extensions for system reliability analysis by Xing, Liudong

    Published 2015
    Table of Contents: “…7.5 Applications to Phased-Mission Systems -- 7.5.1 Mini-Component Concept -- 7.5.2 Extended SEA Method for PMS -- 7.5.3 An Illustrative Example -- 7.6 Summary -- 8 Shared Decision Diagrams -- 8.1 Multi-Rooted Decision Diagrams -- 8.2 Multi-Terminal Decision Diagrams -- 8.3 Performance Study on Multi-State Systems -- 8.3.1 Example Analyses -- 8.3.2 Benchmark Studies -- 8.4 Application to Phased-Mission Systems -- 8.4.1 PMS Analysis Using MDDs -- 8.4.1.1 Step 1-Variable Encoding -- 8.4.1.2 Step 2-Input Variable Ordering -- 8.4.1.3 Step 3-PMS MDD Generation -- 8.4.1.4 Step 4-PMS MDD Evaluation -- 8.4.2 An Illustrative Example -- 8.5 Application to Multi-State k-out-of-n Systems -- 8.5.1 Multi-State k-out-of-n System Analysis Using MDDs -- 8.5.1.1 Step 1- BDDkl Generation -- 8.5.1.2 Step 2- MDDkl Generation -- 8.5.1.3 Step 3- MDDSj Generation -- 8.5.1.4 Step 4-System MDDSj Evaluation -- 8.5.2 An Illustrative Example -- 8.6 Importance Measures -- 8.6.1 Capacity Networks and Reliability Modeling -- 8.6.2 Composite Importance Measures (Type 1) -- 8.6.2.1 General CIMs -- 8.6.2.2 Alternative CIMs -- 8.6.3 Computing CIMs Using MDD -- 8.6.4 An Illustrative Example -- 8.7 Failure Frequency Based Measures -- 8.8 Summary -- Conclusions -- References -- Index -- EULA.…”
    Full text (MFA users only)
    Electronic eBook
  7. 307

    Advanced security solutions for multimedia

    Published 2021
    Full text (MFA users only)
    Electronic eBook
  8. 308

    XML for DB2 information integration

    Published 2004
    Table of Contents: “…-- 3.4 Creating an XML schema from a database schema -- 3.4.1 The algorithm.…”
    Full text (MFA users only)
    Electronic eBook
  9. 309

    Security, Privacy and Reliability in Computer Communications and Networks. by Sha, Kewei

    Published 2016
    Table of Contents: “…Front Cover -- Half Title Page -- RIVER PUBLISHERS SERIES IN INNOVATION AND CHANGE IN EDUCATION -- CROSS-CULTURAL PERSPECTIVE -- Title Page -- Security, Privacy and Reliability in Computer Communications and Networks -- Copyright Page -- Contents -- Preface -- Acknowledgments -- List of Contributors -- List of Figures -- List of Tables -- List of Algorithms -- List of Abbreviations -- PART I -- Privacy -- Chapter 1 -- Distributed Beamforming Relay Selection to Increase Base Station Anonymity in Wireless Ad Hoc Networks -- Abstract -- 1.1 Introduction -- 1.2 Anonymity Definition, Metrics, and Contemporary Measures -- 1.2.1 Anonymity Definition and Assessment -- 1.2.2 Antitraffic Analysis Measures -- 1.3 System Assumptions and Attack Model -- 1.3.1 Network Model -- 1.3.2 Adversary Model -- 1.3.3 Evidence Theory and Belief Metric -- 1.4 Distributed Beamforming to Increase the BS Anonymity -- 1.4.1 Overview of the DiBAN Protocol -- 1.4.2 DiBAN Illustrative Example -- 1.4.3 DiBAN Energy Analysis -- 1.5 Distributed Beamforming Relay Selection Approach -- 1.6 Validation Experiments -- 1.6.1 Simulation Environment -- 1.6.2 Simulation Results -- 1.7 Conclusions and FutureWork -- Appendix I: Numerical Evidence Theory Belief Calculation Example -- References -- Chapter 2 -- A Privacy-Preserving and Efficient Information Sharing Scheme for VANET Secure Communication -- Abstract -- 2.1 Introduction -- 2.2 Related Works -- 2.3 System Model and Preliminaries -- 2.3.1 Network Model -- 2.3.2 Attack Model -- 2.3.3 Security Requirements -- 2.4 The Proposed PETS Scheme -- 2.4.1 Scheme Overview -- 2.4.2 System Initiation -- 2.4.3 Vehicle-RSU Key Agreement -- 2.4.4 Traffic Information Collection and Aggregation -- 2.4.5 Traffic Jam Message Propagation -- 2.5 Security Analysis -- 2.6 Performance Evaluation -- 2.6.1 Traffic Information Sending/Collection Overhead.…”
    Full text (MFA users only)
    Electronic eBook
  10. 310

    SCADA Security : Machine Learning Concepts for Intrusion Detection and Prevention. by Almalawi, Abdulmohsen

    Published 2020
    Table of Contents: “…CHAPTER 4 Efficient k-Nearest Neighbour Approach Based on Various-Widths Clustering -- 4.1 INTRODUCTION -- 4.2 RELATED WORK -- 4.3 THE kNNVWC APPROACH -- 4.3.1 FWC Algorithm and Its Limitations -- 4.3.2 Various-Widths Clustering -- 4.3.3 The k-NN Search -- 4.4 EXPERIMENTAL EVALUATION -- 4.4.1 Data Sets -- 4.4.2 Performance Metrics -- 4.4.3 Impact of Cluster Size -- 4.4.4 Baseline Methods -- 4.4.5 Distance Metric -- 4.4.6 Complexity Metrics -- 4.5 CONCLUSION -- CHAPTER 5 SCADA Data-Driven Anomaly Detection -- 5.1 INTRODUCTION -- 5.2 SDAD APPROACH -- 5.2.1 Observation State of SCADA Points…”
    Full text (MFA users only)
    Electronic eBook
  11. 311

    QoS in integrated 3G networks by Lloyd-Evans, Robert

    Published 2002
    Full text (MFA users only)
    Electronic eBook
  12. 312

    IBM TotalStorage : SAN product, design, and optimization guide

    Published 2005
    Table of Contents: “…-- 1.1.2 The Internet brings increased risks -- 1.1.3 Planning for business continuity -- 1.2 Using a SAN for business continuance -- 1.2.1 SANs and business continuance -- 1.3 SAN business benefits -- 1.3.1 Storage consolidation and sharing of resources -- 1.3.2 Data sharing -- 1.3.3 Nondisruptive scalability for growth -- 1.3.4 Improved backup and recovery -- 1.3.5 High performance -- 1.3.6 High availability server clustering -- 1.3.7 Improved disaster tolerance -- 1.3.8 Allow selection of best of breed storage -- 1.3.9 Ease of data migration -- 1.3.10 Reduced total costs of ownership -- 1.3.11 Storage resources match e-business enterprise needs -- Chapter 2. …”
    Full text (MFA users only)
    Electronic eBook
  13. 313

    Deep learning with Python : a hands-on introduction by Ketkar, Nikhil

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  14. 314

    Deep learning for dummies by Mueller, John, 1958-, Massaron, Luca

    Published 2019
    Full text (MFA users only)
    Electronic eBook
  15. 315

    Robust and error-free geometric computing by Eberly, Dave

    Published 2020
    Full text (MFA users only)
    Electronic eBook
  16. 316

    Hands-On Deep Learning with TensorFlow. by Boxel, Dan Van

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  17. 317

    The Johns Hopkins guide to digital media

    Published 2014
    Table of Contents: “…Berry -- Cognitive implications of new media / Anne Mangen and Jean-Luc Velay -- Collaborative narrative / Scott Rettberg -- Collective intelligence / John Duda -- Combinatory and automatic text generation / Philippe Bootz and Christopher Funkhouser -- Computational linguistics / Inderjeet Mani -- Conceptual writing / Darren Wershler -- Copyright / Benjamin J. …”
    Book
  18. 318
  19. 319

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…<i>3</i>Big Data Analytics. 31</p> <p>1.7.4 Visualizing Big Data. 32</p> <p>1.8 Big Data Technology. 32</p> <p>1.8.1 Challenges faced by Big Data technology. 34</p> <p>1.8.1 Heterogeneity and incompleteness. 34</p> <p>1.8.2 Volume and velocity of the Data. 35</p> <p>1.8.3 Data Storage. 35</p> <p>1.8.4 Data Privacy. 36</p> <p>1.9 Big Data Applications. 36</p> <p>1.10 Big Data Use Cases. 37</p> <p>1.9. 1 Healthcare. 37</p> <p>1.9.2 Telecom.. 38</p> <p>1.9.3 Financial Services. 39</p> <p>Chapter 1 refresher: 40</p> <p>Conceptual short Questions with answers. 43</p> <p>Frequently asked Interview questions. 45</p> <p>Chapter Objective. 46</p> <p>Big Data Storage Concepts. 46</p> <p>2.1 Cluster computing. 47</p> <p>2.1.1 Types of cluster. 49</p> <p>2.1.1.1 High availability cluster. 50</p> <p>2.1.1.2 Load balancing cluster. 50</p> <p>2.1.2 Cluster structure. 51</p> <p>2.3 Distribution Models. 53</p> <p>2.3.1 Sharding. 54</p> <p>2.3.2 Data Replication. 56</p> <p>2.3.2.1 Master-Slave model 57</p> <p>2.3.2.2 Peer-to-Peer model 58</p> <p>2.3.3 Sharding and Replication. 59</p> <p>2.4 Distributed file system.. 60</p> <p>2.5 Relational and Non Relational Databases. 61</p> <p>CoursesOffered. 62</p> <p>Figure 2.12 Data divided across multiple related tables. 62</p> <p>2.4.2 RDBMS Databases. 63</p> <p>2.4.3 NoSQL Databases. 63</p> <p>2.4.4 NewSQL Databases. 64</p> <p>2.5 Scaling Up and Scaling Out Storage. 65</p> <p>Chapter 2 refresher. 67</p> <p>Conceptual short questions with answers. 69</p> <p>Chapter Objective. 72</p> <p>3.1 Introduction to NoSQL. 72</p> <p>3.2 Why NoSQL. 72</p> <p>3.3 CAP theorem.. 73</p> <p>3.4 ACID.. 75</p> <p>3.5 BASE. 76</p> <p>3.6 Schemaless Database. 77</p> <p>3.7 NoSQL (Not Only SQL) 77</p> <p>3.7.1 NoSQL Vs RDBMS. 78</p> <p>3.7.2Features of NoSQL database. 79</p> <p>3.7.3Types of NoSQL Technologies. 80</p> <p>3.7.3.1 Key-Value store database. 81</p> <p>3.7.3.2 Column-store database. 82</p> <p>3.7.3.3 Document Oriented Database. 84</p> <p>3.7.3.4 Graph-oriented Database. 86</p> <p>3.7.4 NoSQL Operations. 93</p> <p>3.9 Migrating from RDBMS to NoSQL. 98</p> <p>Chapter 3 refresher. 99</p> <p>Conceptual short questions with answers. 102</p> <p>Chapter Objective. 104</p> <p>4.1 Data Processing. 104</p> <p>4.2 Shared Everything Architecture. 106</p> <p>4.2.1 Symmetric multiprocessing architecture. 107</p> <p>4.2.2 Distributed Shared memory. 108</p> <p>4.3 Shared nothing architecture. 109</p> <p>4.4 Batch Processing. 110</p> <p>4.5 Real-Time Data Processing. 111</p> <p>4.6 Parallel Computing. 112</p> <p>4.7 Distributed Computing. 113</p> <p>4.8 Big Data Virtualization. 113</p> <p>4.8.1 Attributes of Virtualization. 114</p> <p>4.8.1.1 Encapsulation. 115</p> <p>4.8.1.2 Partitioning. 115</p> <p>4.8.1.3 Isolation. 115</p> <p>4.8.2Big Data Server Virtualization. 116</p> <p>4.9 Introduction. 116</p> <p>4.10 Cloud computing types. 118</p> <p>4.11Cloud Services. 120</p> <p>4.12 Cloud Storage. 121</p> <p>4.12.1 Architecture of GFS. 121</p> <p>4.12.1.1 Master. 123</p> <p>4.12.1.2 Client. 123</p> <p>4.13 Cloud Architecture. 127</p> <p>Cloud Challenges. 129</p> <p>Chapter 4 Refresher. 130</p> <p>Conceptual short questions with answers. 133</p> <p>Chapter Objective. 139</p> <p>5.1 Apache Hadoop. 139</p> <p>5.1.1 Architecture of Apache Hadoop. 140</p> <p>5.1.2Hadoop Ecosystem Components Overview.. 140</p> <p>5.2 Hadoop Storage. 142</p> <p>5.2.1HDFS (Hadoop Distributed File System). 142</p> <p>5.2.2Why HDFS?. …”
    Full text (MFA users only)
    Electronic eBook
  20. 320