Search Results - (((((((kent OR wiant) OR ken) OR wants) OR cantor) OR anne) OR carter) OR wanting) algorithms.

  1. 121

    OpenCV Android Programming By Example. by Muhammad, Amgad

    Published 2015
    Full text (MFA users only)
    Electronic eBook
  2. 122

    Apache Spark for Data Science Cookbook. by Chitturi, Padma Priya

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  3. 123

    IP multicast with applications to IPTV and mobile DVB-H by Minoli, Daniel, 1952-

    Published 2008
    Table of Contents: “…Cover -- TOC36;CONTENTS -- Preface -- About the Author -- CH36;1 INTRODUCTION TO IP MULTICAST -- 146;1 Introduction -- 146;2 Why Multicast Protocols are Wanted47;Needed -- 146;3 Basic Multicast Protocols and Concepts -- 146;4 IPTV and DVB45;H Applications -- 146;5 Course of Investigation -- Appendix 146;A58; Multicast IETF Request for Comments -- Appendix 146;B58; Multicast Bibliography -- References -- CH36;2 MULTICAST ADDRESSING FOR PAYLOAD -- 246;1 IP Multicast Addresses -- 246;146;1 Limited Scope Addresses -- 246;146;2 GLOP Addressing -- 246;146;3 Generic IPv4 Addressing -- 246;2 Layer 2 Multicast Addresses -- 246;246;1 Ethernet MAC Address Mapping -- 246;3 MPEG45;Layer Addresses -- References -- CH36;3 MULTICAST PAYLOAD FORWARDING -- 346;1 Multicasting on a LAN Segment -- 346;2 Multicasting between Network Segments -- 346;3 Multicast Distribution Trees -- 346;4 Multicast Forwarding58; Reverse Path Forwarding -- 346;5 Multicast Forwarding58; Center45;Based Tree Algorithm -- 346;6 Implementing IP Multicast in a Network -- References -- CH36;4 DYNAMIC HOST REGISTRATION8212;INTERNET GROUP MANAGEMENT PROTOCOL -- 446;1 IGMP Messages -- 446;2 IGMPv3 Messages -- 446;3 IGMP Operation -- Appendix 446;A58; Protocol Details for IGMPv2 -- 446;A46;1 Overview -- 446;A46;2 Protocol Description -- 446;A46;3 Receiver 40;Host41; State Diagram -- 446;A46;4 Router State Diagram -- Appendix 446;B58; IGMP Snooping Switches -- Appendix 446;C58; Example of Router Configurations -- References -- CH36;5 MULTICAST ROUTING8212;SPARSE45;MODE PROTOCOLS58; PROTOCOL INDEPENDENT MULTICAST -- 546;1 Introduction to PIM -- 546;2 PIM SM Details -- 546;246;1 Approach -- 546;246;2 PIM SM Protocol Overview -- 546;246;3 Detailed Protocol Description -- 546;246;4 Packet Formats -- References -- CH36;6 MULTICAST ROUTING8212;SPARSE45;MODE PROTOCOLS58; CORE45;BASED TREES -- 646;1 Motivation -- 646;2 Basic Operation -- 646;3 CBT Components and Functions -- 646;346;1 CBT Control Message Retransmission Strategy -- 646;346;2 Nonmember Sending -- 646;4 Core Router Discovery -- 646;5 Protocol Specification Details -- 646;546;1 CBT HELLO Protocol -- 646;546;2 JOIN_REQUEST Processing -- 646;546;3 JOIN_ACK Processing -- 646;546;4 QUIT_NOTIFICATION Processing -- 646;546;5 ECHO_REQUEST Processing -- 646;546;6 ECHO_REPLY Processing -- 646;546;7 FLUSH_TREE Processing -- 646;546;8 Nonmember Sending -- 646;546;9 Timers and Default Values -- 646;546;10 CBT Packet Formats and Message Types -- 646;546;11 Core Router Discovery -- 646;6 CBT Version 3 -- 646;646;1 The First Step58; Joining the Tree -- 646;646;2 Transient State -- 646;646;3 Getting 34;On Tree34; -- 646;646;4 Pruning and Prune State -- 646;646;5 The Forwarding Cache -- 646;646;6 Packet Forwarding -- 646;646;7 The 34;Keepalive34; Protocol -- 646;646;8 Control Message Precedence and Forwarding Criteria -- 646;646;9 Broadcast LANs -- 646;646;10 The 34;all45;cbt45;routers34; Group -- 646;646;11 Nonmember Sending -- References -- CH36;7 MULTICAST ROUTING8212;DENSE45;MODE PROTOCOLS58; PIM DM.…”
    Full text (MFA users only)
    Electronic eBook
  4. 124

    Principles of artificial neural networks by Graupe, Daniel

    Published 2013
    Table of Contents: “…Fundamentals of biological neural networks -- ch. 3. Basic principles of ANNs and their early structures. 3.1. Basic principles of ANN design. 3.2. …”
    Full text (MFA users only)
    Electronic eBook
  5. 125
  6. 126

    Discovering knowledge in data : an introduction to data mining by Larose, Daniel T.

    Published 2014
    Table of Contents: “…DISCOVERING KNOWLEDGE IN DATA -- Contents -- Preface -- 1 An Introduction to Data Mining -- 1.1 What is Data Mining? -- 1.2 Wanted: Data Miners -- 1.3 The Need for Human Direction of Data Mining -- 1.4 The Cross-Industry Standard Practice for Data Mining -- 1.4.1 Crisp-DM: The Six Phases -- 1.5 Fallacies of Data Mining -- 1.6 What Tasks Can Data Mining Accomplish? …”
    Full text (MFA users only)
    Electronic eBook
  7. 127
  8. 128

    MATLAB for Machine Learning. by Ciaburro, Giuseppe

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  9. 129

    Hack proofing your network

    Published 2002
    Full text (MFA users only)
    Electronic eBook
  10. 130

    Frontiers of Artificial Intelligence in Medical Imaging. by Razmjooy, Navid

    Published 2023
    Table of Contents: “…5.5 Electromagnetic field optimization algorithm -- 5.6 Developed electromagnetic field optimization algorithm -- 5.7 Simulation results -- 5.7.1 Image acquisition -- 5.7.2 Pre-processing stage -- 5.7.3 Processing stage -- 5.7.4 Classification -- 5.8 Final evaluation -- 5.9 Conclusions -- References -- Chapter 6 Evaluation of COVID-19 lesion from CT scan slices: a study using entropy-based thresholding and DRLS segmentation -- 6.1 Introduction -- 6.2 Context -- 6.3 Methodology -- 6.3.1 COVID-19 database -- 6.3.2 Image conversion and pre-processing -- 6.3.3 Image thresholding…”
    Full text (MFA users only)
    Electronic eBook
  11. 131
  12. 132

    Advanced Analytics with R and Tableau. by Stirrup, Jen

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  13. 133
  14. 134

    Power and energy systems III : selected, peer reviewed papers from the 2013 3rd International Conference on Power and Energy Systems (ICPES 2013), November 23-24, Bangkok, Thailand

    Published 2014
    Table of Contents: “…Appropriate Electric Energy Conservation Measures for Big Mosques in Riyadh CityBayesian Algorithm Based on Airborne Power Supply System; Study on the Cooling System of Super-Capacitors for Hybrid Electric Vehicle; A Charging Management of Electric Vehicles Based on Campus Survey Data; Back-EMF Position Detection Technology for Brushless DC Motor; Stress State of Turbine Blade Root and Rim Considering Manufacturing Variations; Analysis on a Gas Turbine Sealing Disk Structure and Material Strength; A Kind of Adjustable Electric Heating Pipe Power Electrode Preparation Equipment.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  15. 135
  16. 136

    Mathematical Methods in Interdisciplinary Sciences. by Chakraverty, Snehashish

    Published 2020
    Table of Contents: “…1.2.2.1 Architecture of Single-Layer LgNN Model -- 1.2.2.2 Training Algorithm of Laguerre Neural Network (LgNN) -- 1.2.2.3 Gradient Computation of LgNN -- 1.3 Methodology for Solving a System of Fredholm Integral Equations of Second Kind -- 1.3.1 Algorithm -- 1.4 Numerical Examples and Discussion -- 1.4.1 Differential Equations and Applications -- 1.4.2 Integral Equations -- 1.5 Conclusion -- References -- Chapter 2 Deep Learning in Population Genetics: Prediction and Explanation of Selection of a Population -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Dataset Description…”
    Full text (MFA users only)
    Electronic eBook
  17. 137

    A Primer on Machine Learning Applications in Civil Engineering by Deka, Paresh Chandra

    Published 2019
    Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
    Full text (MFA users only)
    Electronic eBook
  18. 138

    Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications

    Published 2012
    Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
    Full text (MFA users only)
    Electronic eBook
  19. 139
  20. 140

    Building Machine Learning Systems with Python. by Richert, Willi

    Published 2013
    Full text (MFA users only)
    Electronic eBook