Search Results - (((((((want OR alter) OR wind) OR mantis) OR cantor) OR anne) OR halted) OR wanting) algorithms.
Suggested Topics within your search.
Suggested Topics within your search.
- Machine learning 20
- Artificial intelligence 19
- Data processing 16
- Data mining 14
- Mathematics 11
- artificial intelligence 11
- Mathematical models 10
- Neural networks (Computer science) 10
- Python (Computer program language) 10
- Technological innovations 10
- methods 10
- Application software 8
- Artificial Intelligence 8
- Data Mining 8
- Development 8
- Electric power systems 7
- Machine Learning 7
- algorithms 6
- Algorithms 5
- Automatic control 5
- Automation 5
- Digital media 5
- History 5
- Manufacturing processes 5
- Mechatronics 5
- Neural Networks, Computer 5
- R (Computer program language) 5
- Renewable energy sources 5
- Security measures 5
- Social aspects 5
Search alternatives:
- wind »
- mantis »
- halted »
- wanting »
-
241
-
242
Artificial intelligence research and development : current challenges, new trends and applications
Published 2018Table of Contents: “…-- An Argumentation Approach for Agreement Analysis in Reddit Debates -- Tweet Sentiment Visualization and Classification Using Manifold Dimensionality Reduction -- N-Channel Convolutional Neural Networks for Irony Detection in Twitter -- A New Algorithm for Speech Enhancement Based on Multivariate Empirical Mode Decomposition -- Classifying and Generalizing Successful Parameter Combinations for Sound Design -- A Visual Distance for WordNet -- Enhancing Text Spotting with a Language Model and Visual Context Information -- Cognitive Systems and Agents -- What Is the Physics of Intelligence? …”
Full text (MFA users only)
Electronic Conference Proceeding eBook -
243
A Primer on Machine Learning Applications in Civil Engineering
Published 2019Table of Contents: “…Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- A Primer on Machine Learning Applications in Civil Engineering -- Author -- 1: Introduction -- 1.1 Machine Learning -- 1.2 Learning from Data -- 1.3 Research in Machine Learning: Recent Progress -- 1.4 Artificial Neural Networks -- 1.5 Fuzzy Logic (FL) -- 1.6 Genetic Algorithms -- 1.7 Support Vector Machine (SVM) -- 1.8 Hybrid Approach (HA) -- Bibliography -- 2: Artificial Neural Networks -- 2.1 Introduction to Fundamental Concepts and Terminologies -- 2.2 Evolution of Neural Networks -- 2.3 Models of ANN -- 2.4 McCulloch-Pitts Model -- 2.5 Hebb Network -- 2.6 Summary -- 2.7 Supervised Learning Network -- 2.7.1 Perceptron Network -- 2.7.2 Adaptive Linear Neuron -- 2.7.3 Back-Propagation Network -- 2.7.4 Radial Basis Function Network -- 2.7.5 Generalized Regression Neural Networks -- 2.7.6 Summary -- 2.8 Unsupervised Learning Networks -- 2.8.1 Introduction -- 2.8.2 Kohonen Self-Organizing Feature Maps -- 2.8.3 Counter Propagation Network -- 2.8.4 Adaptive Resonance Theory Network -- 2.8.5 Summary -- 2.9 Special Networks -- 2.9.1 Introduction -- 2.9.2 Gaussian Machine -- 2.9.3 Cauchy Machine -- 2.9.4 Probabilistic Neural Network -- 2.9.5 Cascade Correlation Neural Network -- 2.9.6 Cognitive Network -- 2.9.7 Cellular Neural Network -- 2.9.8 Optical Neural Network -- 2.9.9 Summary -- 2.10 Working Principle of ANN -- 2.10.1 Introduction -- 2.10.2 Types of Activation Function -- 2.10.3 ANN Architecture -- 2.10.4 Learning Process -- 2.10.5 Feed-Forward Back Propagation -- 2.10.6 Strengths of ANN -- 2.10.7 Weaknesses of ANN -- 2.10.8 Working of the Network -- 2.10.9 Summary -- Bibliography -- 3: Fuzzy Logic -- 3.1 Introduction to Classical Sets and Fuzzy Sets -- 3.1.1 Classical Sets -- 3.1.2 Fuzzy Sets -- 3.1.3 Summary.…”
Full text (MFA users only)
Electronic eBook -
244
-
245
Artificial Intelligence in Wireless Communications.
Published 2009Full text (MFA users only)
Electronic eBook -
246
Microwave and millimeter wave circuits and systems : emerging design, technologies, and applications
Published 2012Table of Contents: “…1.1.7 MBF Model -- the Memoryless PA Behavioural Model of ChoiceAcknowledgements; References; 2 Artificial Neural Network in Microwave Cavity Filter Tuning; 2.1 Introduction; 2.2 Artificial Neural Networks Filter Tuning; 2.2.1 The Inverse Model of the Filter; 2.2.2 Sequential Method; 2.2.3 Parallel Method; 2.2.4 Discussion on the ANN's Input Data; 2.3 Practical Implementation -- Tuning Experiments; 2.3.1 Sequential Method; 2.3.2 Parallel Method; 2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency; 2.5 Robots in the Microwave Filter Tuning; 2.6 Conclusions; Acknowledgement…”
Full text (MFA users only)
Electronic eBook -
247
Pediatric incontinence : evaluation and clinical management
Published 2015Full text (MFA users only)
Electronic eBook -
248
Networks-on-chip : from implementations to programming paradigms
Published 2014Full text (MFA users only)
Electronic eBook -
249
Learning Geospatial Analysis with Python - Second Edition.
Published 2015Full text (MFA users only)
Electronic eBook -
250
The next economic disaster : why it's coming and how to avoid it
Published 2014Full text (MFA users only)
Electronic eBook -
251
Digitalization of Society and Socio-Political Issues. 1, Digital, Communication, and Culture
Published 2019Table of Contents: “…The Digitalization of Cultural Policies in France 149; Anne BELLON 14.1.…”
Full text (MFA users only)
Electronic eBook -
252
How to measure anything in cybersecurity risk
Published 2016Full text (MFA users only)
Electronic eBook -
253
Millimeter-wave digitally intensive frequency generation in CMOS
Published 2015Full text (MFA users only)
Electronic eBook -
254
Integration of swarm intelligence and artificial neural network
Published 2011Full text (MFA users only)
Electronic eBook -
255
-
256
Statistical learning from a regression perspective
Published 2008Full text (MFA users only)
Electronic eBook -
257
Machine Learning in Chemical Safety and Health : Fundamentals with Applications.
Published 2022Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
Full text (MFA users only)
Electronic eBook -
258
Listed Volatility and Variance Derivatives : a Python-based Guide.
Published 2016Full text (MFA users only)
Electronic eBook -
259
-
260
Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization
Published 2019Table of Contents: “…2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front…”
Full text (MFA users only)
Electronic eBook