Search Results - (((((((want OR mantis) OR wants) OR alter) OR cantor) OR anne) OR when) OR wanting) algorithms.

Search alternatives:

  1. 141
  2. 142

    Numerical Methods for Eigenvalue Problems. by Börm, Steffen

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  3. 143
  4. 144
  5. 145

    Mastering Scala machine learning by Kozlov, Alexander

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  6. 146
  7. 147

    Enterprise AI for Dummies. by Jarvinen, Zachary

    Published 2020
    Table of Contents: “…External partnerships -- The importance of executive buy-in -- Weighing Your Options: Build versus Buy -- When you should do it yourself -- When you should partner with a provider -- Hosting in the Cloud versus On Premises -- What the cloud providers say -- What the hardware vendors say -- The truth in the middle -- Part 2 Exploring Vertical Market Applications -- Chapter 5 Healthcare/HMOs: Streamlining Operations -- Surfing the Data Tsunami -- Breaking the Iron Triangle with Data -- Matching Algorithms to Benefits -- Examining the Use Cases -- Delivering lab documents electronically…”
    Full text (MFA users only)
    Electronic eBook
  8. 148

    Essential US for trauma : E-FAST

    Published 2014
    Table of Contents: “…Foreword -- Preface -- 1 Basic physics, instrumentation and knobology -- 2 E-FAST protocol: Introduction and focused questions -- 3 Abdominal views: Anatomy, Techniques, Scanning tips and tricks, abnormal images -- 4Thoracic views: Anatomy, Techniques, Scanning Tips and Tricks, Abnormal Images -- 5Including EFAST in Trauma Algorithm: When? What to do next? -- 6 The role of EFAST in Comprehensive US Trauma Management (ABCDE-US) Facing Clinical Scenarios -- 7 Pre-Hospital US in Trauma: Role and Tips -- 8CEUS-FAST: What is it?…”
    Full text (MFA users only)
    Electronic eBook
  9. 149
  10. 150

    Evolutionary optimization

    Published 2002
    Table of Contents: “…Cover -- Contents -- Preface -- Contributing Authors -- Part I Introduction -- 1 Conventional Optimization Techniques -- 1 Classifying Optimization Models -- 2 Linear Programming -- 3 Goal Programming -- 4 Integer Programming -- 5 Nonlinear Programming -- 6 Simulation -- 7 Further Reading -- 2 Evolutionary Computation -- 1 What Is Evolutionary Computation -- 2 A Brief Overview of Evolutionary Computation -- 3 Evolutionary Algorithm and Generate-and-Test Search Algorithm -- 4 Search Operators -- 5 Summary -- Part II Single Objective Optimization -- 3 Evolutionary Algorithms and Constrained Optimization -- 1 Introduction -- 2 General considerations -- 3 Numerical optimization -- 4 Final Remarks -- 4 Constrained Evolutionary Optimization -- 1 Introduction -- 2 The Penalty Function Method -- 3 Stochastic Ranking -- 4 Global Competitive Ranking -- 5 How Penalty Methods Work -- 6 Experimental Study -- 7 Conclusion -- Appendix: Test Function Suite -- Part III Multi-Objective Optimization -- 5 Evolutionary Multiobjective Optimization -- 1 Introduction -- 2 Definitions -- 3 Historical Roots -- 4 A Quick Survey of EMOO Approaches -- 5 Current Research -- 6 Future Research Paths -- 7 Summary -- 6 MEA for Engineering Shape Design -- 1 Introduction -- 2 Multi-Objective Optimization and Pareto-Optimality -- 3 Elitist Non-dominated Sorting GA (NSGA-II) -- 4 Hybrid Approach -- 5 Optimal Shape Design -- 6 Simulation Results -- 7 Conclusion -- 7 Assessment Methodologies for MEAs -- 1 Introduction -- 2 Assessment Methodologies -- 3 Discussion -- 4 Comparing Two Algorithms: An Example -- 5 Conclusions and Future Research Paths -- Part IV Hybrid Algorithms -- 8 Hybrid Genetic Algorithms -- 1 Introduction -- 2 Hybridizing GAs with Local Improvement Procedures -- 3 Adaptive Memory GA's -- 4 Summary -- 9 Combining choices of heuristics -- 1 Introduction -- 2 GAs and parameterised algorithms -- 3 Job Shop Scheduling -- 4 Scheduling chicken catching -- 5 Timetabling -- 6 Discussion and future directions -- 10 Nonlinear Constrained Optimization -- 1 Introduction -- 2 Previous Work -- 3 A General Framework to look for SPdn -- 4 Experimental Results -- 5 Conclusions -- Part V Parameter Selection in EAs -- 11 Parameter Selection -- 1 Introduction -- 2 Parameter tuning vs. parameter control -- 3 An example -- 4 Classification of Control Techniques -- 5 Various forms of control -- 6 Discussion -- Part VI Application of EAs to Practical Problems -- 12 Design of Production Facilities -- 1 Introduction -- 2 Design for Material Flow When the Number of I/O Points is Unconstrained -- 3 Design for Material Flow for a Single I/O Point -- 4 Considering Intradepartmental Flow -- 5 Material Handling System Design -- 6 Concluding Remarks -- 13 Virtual Population and Acceleration Techniques -- 1 Introduction -- 2 Concept of Virtual Population -- 3 Solution Acceleration Techniques -- 4 Accelerated GA and Acceleration Sche.…”
    Full text (MFA users only)
    Electronic eBook
  11. 151
  12. 152
  13. 153

    Function Estimates. by Marron, J. S.

    Published 1986
    Table of Contents: “…Contents -- Preface -- Logspline density estimation -- Statistical encounters with B-splines -- Estimation of a transfer function in a nongaussian context -- Evaluating the performance of an inversion algorithm -- Harmonic splines in geomagnetism -- Problems in estimating the anomalous gravity potential of the earth from discrete data -- What regression model should be chosen when the statistician misspecifies the error distribution? …”
    Full text (MFA users only)
    Electronic eBook
  14. 154

    Creating E-Learning Games with Unity. by Horachek, David

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  15. 155
  16. 156

    Handbook of biometrics for forensic science

    Published 2017
    Table of Contents: “…5.2 Background of Fingerprint Alterations5.2.1 Obliteration; 5.2.2 Distortion; 5.2.3 Imitation; 5.3 Related Work; 5.3.1 Orientation Field Analysis; 5.3.2 Minutiae Distribution Analysis; 5.4 Recent Algorithms for Fingerprint Alteration Detection; 5.4.1 Preprocessing; 5.4.2 Singular Point Density Analysis; 5.4.3 Minutia Orientation Analysis; 5.4.4 Orientation Difference Map; 5.4.5 Orientation Density Map; 5.5 Evaluation and Results; 5.6 Conclusion; References; Face and Video Analysis; 6 Face Sketch Recognition via Data-Driven Synthesis; 6.1 Introduction; 6.2 Related Work.…”
    Full text (MFA users only)
    Electronic eBook
  17. 157
  18. 158

    Artificial Intelligence and Machine Learning Fundamentals : Develop Real-World Applications Powered by the Latest AI Advances. by Nagy, Zsolt

    Published 2018
    Table of Contents: “…Optimizing the Minmax Algorithm with Alpha-Beta PruningDRYing up the Minmax Algorithm -- The NegaMax Algorithm; Using the EasyAI Library; Activity 4: Connect Four; Summary; Regression; Introduction; Linear Regression with One Variable; What Is Regression?…”
    Full text (MFA users only)
    Electronic eBook
  19. 159
  20. 160