Search Results - (((((((want OR wanton) OR semantic) OR wien) OR cantor) OR anne) OR shape) OR hints) algorithms.

Search alternatives:

Refine Results
  1. 501

    Big Data Analytics with R. by Walkowiak, Simon

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  2. 502
  3. 503
  4. 504

    Sigma-Delta Converters. by De la Rosa, José M.

    Published 2018
    Table of Contents: “…4.5.2 Effect of Finite Slew Rate on CT-Ms 133 -- 4.6 Sources of Distortion in CT-Ms 134 -- 4.6.1 Nonlinearities in the Front-end Integrator 134 -- 4.6.2 Intersymbol Interference in the Feedback DAC 136 -- 4.7 Circuit Noise in CT-Ms 137 -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137 -- 4.7.2 Noise Analysis Considering SC Feedback DACs 139 -- 4.8 Clock Jitter in CT-Ms 140 -- 4.8.1 Jitter in Return-to-zero DACs 141 -- 4.8.2 Jitter in Non-return-to-zero DACs 142 -- 4.8.3 Jitter in Switched-capacitor DACs 144 -- 4.8.4 Lingering Effect of Clock Jitter Error 145 -- 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147 -- 4.9 Excess Loop Delay in CT-Ms 149 -- 4.9.1 Intuitive Analysis of ELD 149 -- 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151 -- 4.9.3 Alternative ELD Compensation Techniques 154 -- 4.10 Quantizer Metastability in CT-Ms 155 -- 4.11 Summary 159 -- References 160 -- 5 Behavioral Modeling and High-level Simulation 165 -- 5.1 Systematic Design Methodology of Modulators 165 -- 5.1.1 System Partitioning and Abstraction Levels 167 -- 5.1.2 Sizing Process 167 -- 5.2 Simulation Approaches for the High-level Evaluation of Ms 169 -- 5.2.1 Alternatives to Transistor-level Simulation 169 -- 5.2.2 Event-driven Behavioral Simulation Technique 171 -- 5.2.3 Programming Languages and Behavioral Modeling Platforms 172 -- 5.3 Implementing M Behavioral Models 173 -- 5.3.1 From Circuit Analysis to Computational Algorithms 173 -- 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175 -- 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178 -- 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182 -- 5.4 Efficient Behavioral Modeling of M Building Blocks using C-MEX S-functions 188 -- 5.4.1 Modeling of SC Integrators using S-functions 188 -- 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.…”
    Full text (MFA users only)
    Electronic eBook
  5. 505
  6. 506

    Polymer extrusion

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  7. 507

    Big data : concepts, technology and architecture by Balusamy, Balamurugan, R, Nandhini Abirami, Kadry, Seifedine, 1977-, Gandomi, Amir Hossein

    Published 2021
    Table of Contents: “…143</p> <p>5.2.3HDFS Architecture. 143</p> <p>5.2.4HDFS Read/Write Operation. 146</p> <p>5.2.5Rack Awareness. 148</p> <p>5.2.6Features of HDFS. 149</p> <p>5.2.6.1Cost-effective. 149</p> <p>5.2.6.2Distributed storage. 149</p> <p>5.2.6.3Data Replication. 149</p> <p>5.3 Hadoop Computation. 149</p> <p>5.3.1MapReduce. 149</p> <p>5.3.1.1Mapper. 151</p> <p>5.3.1.2Combiner. 151</p> <p>5.3.1.3 Reducer. 152</p> <p>5.3.1.4 JobTracker and TaskTracker. 153</p> <p>5.3.2 MapReduce Input Formats. 154</p> <p>5.3.3 MapReduce Example. 156</p> <p>5.3.4 MapReduce Processing. 157</p> <p>5.3.5 MapReduce Algorithm.. 160</p> <p>5.3.6 Limitations of MapReduce. 161</p> <p>5.4Hadoop 2.0. 161</p> <p>5.4.1Hadoop 1.0 limitations. 162</p> <p>5.4.2 Features of Hadoop 2.0. 163</p> <p>5.4.3 Yet Another Resource Negotiator (YARN). 164</p> <p>5.4.3 Core components of YARN.. 165</p> <p>5.4.3.1 ResourceManager. 165</p> <p>5.4.3.2 NodeManager. 166</p> <p>5.4.4 YARN Scheduler. 169</p> <p>5.4.4.1 <i>FIFO scheduler</i>. 169</p> <p>5.4.4.2 <i>Capacity Scheduler</i>. 170</p> <p>5.4.4.3 <i>Fair Scheduler</i>. 170</p> <p>5.4.5 Failures in YARN.. 171</p> <p>5.4.5.1ResourceManager failure. 171</p> <p>5.4.5.2 ApplicationMaster failure. 172</p> <p>5.4.5.3 NodeManagerFailure. 172</p> <p>5.4.5.4 Container Failure. 172</p> <p>5.3 HBASE. 173</p> <p>5.4 Apache Cassandra. 176</p> <p>5.5 SQOOP. 177</p> <p>5.6 Flume. 179</p> <p>5.6.1 Flume Architecture. 179</p> <p>5.6.1.1 Event. 180</p> <p>5.6.1.2 Agent. 180</p> <p>5.7 Apache Avro. 181</p> <p>5.8 Apache Pig. 182</p> <p>5.9 Apache Mahout. 183</p> <p>5.10 Apache Oozie. 183</p> <p>5.10.1 Oozie Workflow.. 184</p> <p>5.10.2 Oozie Coordinators. 186</p> <p>5.10.3 Oozie Bundles. 187</p> <p>5.11 Apache Hive. 187</p> <p>5.11 Apache Hive. 187</p> <p>Hive Architecture. 189</p> <p>Hadoop Distributions. 190</p> <p>Chapter 5refresher. 191</p> <p>Conceptual short questions with answers. 194</p> <p>Frequently asked Interview Questions. 199</p> <p>Chapter Objective. 200</p> <p>6.1 Terminologies of Big Data Analytics. 201</p> <p><i>Data Warehouse</i>. 201</p> <p><i>Business Intelligence</i>. 201</p> <p><i>Analytics</i>. 202</p> <p>6.2 Big Data Analytics. 202</p> <p>6.2.1 Descriptive Analytics. 204</p> <p>6.2.2 Diagnostic Analytics. 205</p> <p>6.2.3 Predictive Analytics. 205</p> <p>6.2.4 Prescriptive Analytics. 205</p> <p>6.3 Data Analytics Lifecycle. 207</p> <p>6.3.1 Business case evaluation and Identify the source data. 208</p> <p>6.3.2 Data preparation. 209</p> <p>6.3.3 Data Extraction and Transformation. 210</p> <p>6.3.4 Data Analysis and visualization. 211</p> <p>6.3.5 Analytics application. 212</p> <p>6.4 Big Data Analytics Techniques. 212</p> <p>6.4.1 Quantitative Analysis. 212</p> <p>6.4.3 Statistical analysis. 214</p> <p>6.4.3.1 A/B testing. 214</p> <p>6.4.3.2 Correlation. 215</p> <p>6.4.3.3 Regression. 218</p> <p>6.5 Semantic Analysis. 220</p> <p>6.5.1 Natural Language Processing. 220</p> <p>6.5.2 Text Analytics. 221</p> <p>6.7 Big Data Business Intelligence. 222</p> <p>6.7.1 Online Transaction Processing (OLTP). 223</p> <p>6.7.2 Online Analytical Processing (OLAP). 223</p> <p>6.7.3 Real-Time Analytics Platform (RTAP). 224</p> <p>6.6Big Data Real Time Analytics Processing. 225</p> <p>6.7 Enterprise Data Warehouse. 227</p> <p>Chapter 6 Refresher. 228</p> <p>Concept…”
    Full text (MFA users only)
    Electronic eBook
  8. 508

    IBM TotalStorage : SAN product, design, and optimization guide

    Published 2005
    Table of Contents: “…SAN design considerations -- 6.1 What do you want to achieve with a SAN? -- 6.1.1 Storage consolidation -- 6.1.2 High availability solutions -- 6.1.3 LAN-free backup -- 6.1.4 Server-free backup -- 6.1.5 Server-less backup -- 6.1.6 Disaster recovery -- 6.1.7 Flexibility -- 6.1.8 Goals -- 6.1.9 Benefits expected -- 6.1.10 TCO/ROI -- 6.1.11 Investment protection -- 6.2 Existing resources needs and planned growth -- 6.2.1 Collecting the data about existing resources -- 6.2.2 Planning for future needs -- 6.2.3 Platforms and storage -- 6.3 Select the core design for your environment -- 6.3.1 Selecting the topology -- 6.3.2 Scalability -- 6.3.3 Performance -- 6.3.4 Redundancy and resiliency -- 6.4 Host connectivity and Host Bus Adapters -- 6.4.1 Selection criteria -- 6.4.2 Multipathing software -- 6.4.3 Storage sizing -- 6.4.4 Management software -- 6.5 Director class or switch technology -- 6.6 General considerations -- 6.6.1 Ports and ASICs -- 6.6.2 Class F.…”
    Full text (MFA users only)
    Electronic eBook
  9. 509

    Visual Inspection Technology in the Hard Disc Drive Industry. by Muneesawang, Paisarn

    Published 2015
    Table of Contents: “…Introduction / Suchart Yammen / Paisarn Muneesawang -- 1.2. Algorithm for corrosion detection / Suchart Yammen / Paisarn Muneesawang -- 1.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  10. 510

    Public safety networks from LTE to 5G by Yarali, Abdulrahman

    Published 2020
    Table of Contents: “…9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4G-5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.…”
    Full text (MFA users only)
    Electronic eBook
  11. 511

    Fundamentals of Fluid Power Control. by Watton, John

    Published 2009
    Table of Contents: “…Control-Volume Flow Continuity -- PRV Flow -- Force Balance at the Spindle -- 5.13.3 Frequency Response from a Linearized Transfer Function Analysis -- 5.14 Servovalve Dynamics -- First-Stage, Armature, and Flapper-Nozzle -- Flapper-Nozzle and Resistance Bridge Flow Characteristic -- Force Balance at the Spool -- 5.15 An Open-Loop Servovalve-Motor Drive with Line Dynamics Modeled by Lumped Approximations -- Servovalve, Dynamics Included, Underlapped Spool -- Lines, Laminar Mean Flow, Two Lump Approximations per Line, Negligible Motor Internal Volume -- Motor Flow and Torque Equations -- 5.16 Transmission Line Dynamics -- 5.16.1 Introduction -- Servovalve-Cylinder with Short Lines and Significant Actuator Volumes -- Servovalve-Motor with Long Lines and Negligible Actuator Volumes -- 5.16.2 Lossless Line Model for Z and Y -- 5.16.3 Average and Distributed Line Friction Models for Z and Y -- 5.16.4 Frequency-Domain Analysis -- 5.16.5 Servovalve-Reflected Linearized Coefficients -- 5.16.6 Modeling Systems with Nonlossless Transmission Lines, the Modal Analysis Method -- 5.16.7 Modal Analysis Applied to a Servovalve-Motor Open-Loop Drive -- 5.17 The State-Space Method for Linear Systems Modeling -- 5.17.1 Modeling Principles -- 5.17.2 Some Further Aspects of the Time-Domain Solution -- 5.17.3 The Transfer Function Concept in State Space -- 5.18 Data-Based Dynamic Modeling -- 5.18.1 Introduction -- 5.18.2 Time-Series Modeling -- 5.18.3 The Group Method of Data Handling (GMDH) Algorithm -- 5.18.4 Artificial Neural Networks -- 5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling of a Second-Order Dynamic System -- 5.18.6 Time-Series Modeling of a Position Control System -- 5.18.7 Time-Series Modeling for Fault Diagnosis -- 5.18.8 Time-Series Modeling of a Proportional PRV -- 5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator.…”
    Full text (MFA users only)
    Electronic eBook
  12. 512

    Queer Data Studies. by Keilty, Patrick

    Published 2024
    Full text (MFA users only)
    Electronic eBook
  13. 513
  14. 514
  15. 515
  16. 516

    Power system monitoring and control by Bevrani, Hassan

    Published 2014
    Full text (MFA users only)
    Electronic eBook