Search Results - empirical ((((algoritmus OR algorithmic) OR algorithmens) OR algorithmens) OR algorithms)

  1. 121

    Nuclear Magnetic Resonance Spectroscopy Of Liquid Crystals.

    Published 2009
    Table of Contents: “…Spectral analysis using Evolutionary Algorithms -- 1. 7. Conclusions -- Acknowledgments -- References -- 2. …”
    Full text (MFA users only)
    Electronic eBook
  2. 122

    Predictive Modeling of Pharmaceutical Unit Operations. by Pandey, Preetanshu

    Published 2016
    Table of Contents: “…3.5.1.2 Improvements in the efficiency of solution methods, algorithms, and compute architecture3.5.1.3 Advancement in analysis techniques with commercial and open source software; 3.5.2 Case study: creating a material model; 3.6 Summary and outlook; Acknowledgements; References; 4 Dry granulation process modeling; 4.1 Introduction; 4.2 Challenges in dry granulation modeling and recent progress; 4.2.1 Roller compaction technology; 4.2.2 Theoretical background; 4.2.3 Common problems of roller compaction and progress; 4.3 Modeling tools; 4.3.1 DEM modeling; 4.3.2 FEM modeling.…”
    Full text (MFA users only)
    Electronic eBook
  3. 123

    Romance syntax, semantics and L2 acquisition : selected papers from the 30th Linguistic Symposium on Romance Languages : Gainesville, Florida, February 2000

    Published 2001
    Table of Contents: “…Discussion -- 6.1 The learning algorithm -- 6.2 Conceptualizing Learning.…”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  4. 124

    Data Analysis and Applications 1 : New and Classical Approaches. by Skiadas, Christos

    Published 2019
    Table of Contents: “…From statistical learning theory to empirical validation…”
    Full text (MFA users only)
    Electronic eBook
  5. 125
  6. 126

    Qualitative Spatial and Temporal Reasoning. by Ligozat, Gérard

    Published 2012
    Table of Contents: “…Ladkin and Reinefeld's algorithm; 2.4.2. Empirical study of the consistency problem; 2.5. …”
    Full text (MFA users only)
    Electronic eBook
  7. 127

    Artificial intelligence research and development : current challenges, new trends and applications

    Published 2018
    Table of Contents: “…-- An Argumentation Approach for Agreement Analysis in Reddit Debates -- Tweet Sentiment Visualization and Classification Using Manifold Dimensionality Reduction -- N-Channel Convolutional Neural Networks for Irony Detection in Twitter -- A New Algorithm for Speech Enhancement Based on Multivariate Empirical Mode Decomposition -- Classifying and Generalizing Successful Parameter Combinations for Sound Design -- A Visual Distance for WordNet -- Enhancing Text Spotting with a Language Model and Visual Context Information -- Cognitive Systems and Agents -- What Is the Physics of Intelligence? …”
    Full text (MFA users only)
    Electronic Conference Proceeding eBook
  8. 128

    Neural networks in chemical reaction dynamics

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  9. 129
  10. 130
  11. 131
  12. 132

    Principles of mathematical petrophysics by Doveton, John H., 1944-

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  13. 133

    Introduction to OFDM receiver design and simulation by Liu, Y. J.

    Published 2020
    Table of Contents: “…References-7 Error-Correcting Codes and Interleaver-7.1 Introduction-7.2 Linear Block Codes-7.2.1 Generator Matrix-7.2.2 Parity Check Matrix-7.2.3 Syndrome-7.2.4 Error Correction-7.2.5 Hamming Codes-7.3 Cyclic Codes-7.3.1 Generator Polynomial-7.3.2 Syndrome Polynomial-7.4 Convolutional Code-7.4.1 Convolutional Encoder-7.4.2 Convolutional Decoder and Viterbi Algorithm-7.4.3 Convolutional Code in the IEEE 802.11a-7.4.4 Punctured Convolutional Codes-7.5 Interleaver-7.5.1 Illustration of an Interleaver-7.5.2 Interleaver Used in the IEEE 802.11a…”
    Full text (MFA users only)
    Electronic eBook
  14. 134

    Introduction to Bayesian estimation and copula models of dependence by Shemyakin, Arkady

    Published 2017
    Table of Contents: “…4 Markov Chain Monte Carlo Methods4.1 Markov Chain Simulations for Sun City and Ten Coins; 4.2 Metropolis-Hastings Algorithm; 4.3 Random Walk MHA; 4.4 Gibbs Sampling; 4.5 Diagnostics of MCMC; 4.5.1 Monitoring Bias and Variance of MCMC; 4.5.2 Burn-in and Skip Intervals; 4.5.3 Diagnostics of MCMC; 4.6 Suppressing Bias and Variance; 4.6.1 Perfect Sampling; 4.6.2 Adaptive MHA; 4.6.3 ABC and Other Methods; 4.7 Time-to-Default Analysis of Mortgage Portfolios; 4.7.1 Mortgage Defaults; 4.7.2 Customer Retention and Infinite Mixture Models; 4.7.3 Latent Classes and Finite Mixture Models.…”
    Full text (MFA users only)
    Electronic eBook
  15. 135

    Reproducibility : principles, problems, practices, and prospects

    Published 2016
    Table of Contents: “…6.3 Extending BMS (and NML#): BMS* -- 6.4 Replication Variance and Reproducibility -- 6.4.1 Within- and Between-Setting Replication Variance and the True State of the World -- 6.4.2 Reproducibility -- 6.4.3 A Toy Example -- 6.5 Final Remark -- References -- Chapter 7 Reproducibility from the Perspective of Meta-Analysis -- 7.1 Introduction -- 7.2 Basics of Meta-Analysis -- 7.2.1 Conceptual Preliminaries -- 7.2.2 Systematic Reviews -- 7.2.3 Fixed-Effects and Random-Effects Meta-Analysis -- 7.2.4 Biases in Meta-Analysis -- 7.3 Meta-Analysis of Mind-Matter Experiments: A Case Study -- 7.3.1 Statistical Modeling -- 7.3.2 Analysis of the Ramp -- N Data -- 7.4 Summary -- References -- Chapter 8 Why Are There So Many Clustering Algorithms, and How Valid Are Their Results? -- 8.1 Introduction -- 8.1.1 Data Mining and Knowledge Discovery -- 8.1.2 Choices and Assumptions -- 8.2 Supervised and Unsupervised Learning -- 8.3 Cluster Validity as Easiness in Classification -- 8.3.1 Instance Easiness for Supervised Learning -- 8.3.2 Clustering-Quality Measures Based on Supervised Learning -- 8.3.3 Using the Clustering-Quality Measures mp and mc -- 8.4 Applying Clustering-Quality Measures to Data -- 8.4.1 Clustering Based on Prediction Strength -- 8.4.2 Studies with Synthetic Data -- 8.4.3 Studies with Empirical Data -- 8.5 Other Clustering Models -- 8.5.1 Hierarchical Clustering -- 8.5.2 Fuzzy Clustering -- 8.6 Summary -- References -- Part III: Physical Sciences -- Chapter 9 Facilitating Reproducibility in ScientificComputing: Principles and Practice -- 9.1 Introduction -- 9.2 A Culture of Reproducibility -- 9.2.1. …”
    Full text (MFA users only)
    Electronic eBook
  16. 136
  17. 137
  18. 138
  19. 139
  20. 140

    Handbook of safety principles

    Published 2018
    Table of Contents: “…Goal Programming / Yan-Fu Li / Enrico Zio -- 23.3.4. Evolutionary Algorithms / Yan-Fu Li / Enrico Zio -- 23.4. Performance Measures / Yan-Fu Li / Enrico Zio -- 23.5. …”
    Full text (MFA users only)
    Electronic eBook