Search Results - empirical (((algorithmus OR algorithmic) OR (algorithmus OR algorithmic)) OR algorithms)
Suggested Topics within your search.
Suggested Topics within your search.
- Mathematical models 21
- Artificial intelligence 9
- Mathematics 9
- Data processing 8
- Algorithms 6
- Finance 6
- Investments 6
- Machine learning 6
- algorithms 6
- artificial intelligence 6
- Data mining 5
- Statistics 5
- Investment analysis 4
- Machine Learning 4
- Neural networks (Computer science) 4
- Portfolio management 4
- Statistical methods 4
- statistics 4
- Artificial Intelligence 3
- Computer algorithms 3
- Computer simulation 3
- Data Mining 3
- Data protection 3
- Econometric models 3
- Management 3
- Mathematical statistics 3
- Methodology 3
- Multivariate analysis 3
- Neural Networks, Computer 3
- Research 3
Search alternatives:
- algorithmus »
- algorithmic »
-
81
Big data and differential privacy : analysis strategies for railway track engineering
Published 2017Table of Contents: “…3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query.…”
Full text (MFA users only)
Electronic eBook -
82
Applied Artificial Intelligence : Proceedings of the 7th International FLINS Conference.
Published 2006Table of Contents: “…Environmental/economic dispatch using genetic algorithm and fuzzy number ranking method / G. Zhang [and others]. …”
Full text (MFA users only)
Electronic eBook -
83
Mathematics of evolution and phylogeny
Published 2005Table of Contents: “…List of Contributors -- 1 The minimum evolution distance-based approach of phylogenetic inference -- 1.1 Introduction -- 1.2 Tree metrics -- 1.2.1 Notation and basics -- 1.2.2 Three-point and four-point conditions -- 1.2.3 Linear decomposition into split metrics -- 1.2.4 Topological matrices -- 1.2.5 Unweighted and balanced averages -- 1.2.6 Alternate balanced basis for tree metrics -- 1.2.7 Tree metric inference in phylogenetics -- 1.3 Edge and tree length estimation -- 1.3.1 The LS approach -- 1.3.2 Edge length formulae -- 1.3.3 Tree length formulae -- 1.3.4 The positivity constraint -- 1.3.5 The balanced scheme of Pauplin -- 1.3.6 Semple and Steel combinatorial interpretation -- 1.3.7 BME: a WLS interpretation -- 1.4 The agglomerative approach -- 1.4.1 UPGMA and WPGMA -- 1.4.2 NJ as a balanced minimum evolution algorithm -- 1.4.3 Other agglomerative algorithms -- 1.5 Iterative topology searching and tree building -- 1.5.1 Topology transformations.; 1.5.2 A fast algorithm for NNIs with OLS -- 1.5.3 A fast algorithm for NNIs with BME -- 1.5.4 Iterative tree building with OLS -- 1.5.5 From OLS to BME -- 1.6 Statistical consistency -- 1.6.1 Positive results -- 1.6.2 Negative results -- 1.6.3 Atteson's safety radius analysis -- 1.7 Discussion -- Acknowledgements -- 2 Likelihood calculation in molecular phylogenetics -- 2.1 Introduction -- 2.2 Markov models of sequence evolution -- 2.2.1 Independence of sites -- 2.2.2 Setting up the basic model -- 2.2.3 Stationary distribution -- 2.2.4 Time reversibility -- 2.2.5 Rate of mutation -- 2.2.6 Probability of sequence evolution on a tree -- 2.3 Likelihood calculation: the basic algorithm -- 2.4 Likelihood calculation: improved models -- 2.4.1 Choosing the rate matrix -- 2.4.2 Among site rate variation -- 2.4.3 Site-specific rate variation -- 2.4.4 Correlated evolution between sites -- 2.5 Optimizing parameters -- 2.5.1 Optimizing continuous parameters -- 2.5.2 Searching for the optimal tree.; 2.5.3 Alternative search strategies -- 2.6 Consistency of the likelihood approach -- 2.6.1 Statistical consistency -- 2.6.2 Identifiability of the phylogenetic models -- 2.6.3 Coping with errors in the model -- 2.7 Likelihood ratio tests -- 2.7.1 When to use the asymptotic x2 distribution -- 2.7.2 Testing a subset of real parameters -- 2.7.3 Testing parameters with boundary conditions -- 2.7.4 Testing trees -- 2.8 Concluding remarks -- Acknowledgements -- 3 Bayesian inference in molecular phylogenetics -- 3.1 The likelihood function and maximum likelihood estimates -- 3.2 The Bayesian paradigm -- 3.3 Prior -- 3.4 Markov chain Monte Carlo -- 3.4.1 Metropolis-Hastings algorithm -- 3.4.2 Single-component Metropolis-Hastings algorithm -- 3.4.3 Gibbs sampler -- 3.4.4 Metropolis-coupled MCMC -- 3.5 Simple moves and their proposal ratios -- 3.5.1 Sliding window using uniform proposal -- 3.5.2 Sliding window using normally distributed proposal.; 3.5.3 Sliding window using normal proposal in multidimensions -- 3.5.4 Proportional shrinking and expanding -- 3.6 Monitoring Markov chains and processing output -- 3.6.1 Diagnosing and validating MCMC algorithms -- 3.6.2 Gelman and Rubin's potential scale reduction statistic -- 3.6.3 Processing output -- 3.7 Applications to molecular phylogenetics -- 3.7.1 Estimation of phylogenies -- 3.7.2 Estimation of species divergence times -- 3.8 Conclusions and perspectives -- Acknowledgements -- 4 Statistical approach to tests involving phylogenies -- 4.1 The statistical approach to phylogenetic inference -- 4.2 Hypotheses testing -- 4.2.1 Null and alternative hypotheses -- 4.2.2 Test statistics -- 4.2.3 Significance and power -- 4.2.4 Bayesian hypothesis testing -- 4.2.5 Questions posed as function of the tree parameter -- 4.2.6 Topology of treespace -- 4.2.7 The data -- 4.2.8 Statistical paradigms -- 4.2.9 Distributions on treespace -- 4.3 Different types of tests involving phylogenies.; 4.3.1 Testing t1 versus t2 -- 4.3.2 Conditional tests -- 4.3.3 Modern Bayesian hypothesis testing -- 4.3.4 Bootstrap tests -- 4.4 Non-parametric multivariate hypothesis testing -- 4.4.1 Multivariate con.dence regions -- 4.5 Conclusions: there are many open problems -- Acknowledgements -- 5 Mixture models in phylogenetic inference -- 5.1 Introduction: models of gene-sequence evolution -- 5.2 Mixture models -- 5.3 Defining mixture models -- 5.3.1 Partitioning and mixture models -- 5.3.2 Discrete-gamma model as a mixture model -- 5.3.3 Combining rate and pattern-heterogeneity -- 5.4 Digression: Bayesian phylogenetic inference -- 5.4.1 Bayesian inference of trees via MCMC -- 5.5 A mixture model combining rate and pattern-heterogeneity -- 5.5.1 Selected simulation results -- 5.6 Application of the mixture model to inferring the phylogeny of the mammals -- 5.6.1 Model testing -- 5.7 Results -- 5.7.1 How many rate matrices to include in the mixture model?…”
Full text (MFA users only)
Electronic eBook -
84
Machine Learning in Chemical Safety and Health : Fundamentals with Applications.
Published 2022Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
Full text (MFA users only)
Electronic eBook -
85
Qualitative Comparative Analysis : An Introduction To Research Design And Application.
Published 2021Table of Contents: “…Related Methods and Approaches -- Notes -- 9 QCA and Its Critics -- Analytical Robustness -- Comparisons with Other Methods -- Formalization and Algorithms -- Causal Analysis and Solution Terms -- Recognizing QCA's Strengths and Limitations -- Notes -- 10 Guiding Principles for QCA Research -- Good Research Practice -- Documenting and Communicating QCA Results -- QCA Resources -- Current Developments -- The Way Ahead -- Notes -- Appendix: Link to the Online R Manual -- Glossary -- A -- B -- C -- D -- E -- F -- G -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- X-Y -- References…”
Full text (MFA users only)
Electronic eBook -
86
Intelligent computational systems : a multi-disciplinary perspective
Published 2017Table of Contents: “…3.2.1. Genetic Algorithm (GA) -- 3.2.2. Particle Swarm Optimization Algorithm (PSO) -- 3.3. …”
Full text (MFA users only)
Electronic eBook -
87
Biomechanics : optimization, uncertainties and reliability
Published 2017Full text (MFA users only)
Electronic eBook -
88
Computational phraseology
Published 2020Table of Contents: “…Monocollocable words : a type of language combinatory periphery / František Čermák -- Translation asymmetries of multiword expressions in machine translation : an analysis of the TED-MWE corpus / Johanna Monti, Mihael Arcan and Federico Sangati -- German constructional phrasemes and their Russian counterparts : a corpus-based study / Dmitrij Dobrovol'skij -- Computational phraseology and translation studies : from theoretical hypotheses to practical tools / Jean-Pierre Colson -- Computational extraction of formulaic sequences from corpora : two case studies of a new extraction algorithm / Alexander Wahl and Stefan Th. Gries -- Computational phraseology discovery in corpora with the MWETOOLKIT / Carlos Ramisch -- Multiword expressions in comparable corpora / Peter Ďurčo -- Collecting collocations from general and specialised corpora : a comparative analysis / Marie-Claude L'Homme and Daphnée Azoulay -- What matters more : the size of the corpora or their quality? …”
Full text (MFA users only)
Electronic eBook -
89
Rationality and decision making : from normative rules to heuristics
Published 2018Full text (MFA users only)
Electronic eBook -
90
Social-behavioral modeling for complex systems
Published 2019Table of Contents: “…Cover; Title Page; Copyright; Contents; Foreword; List of Contributors; About the Editors; About the Companion Website; Part I Introduction and Agenda; Chapter 1 Understanding and Improving the Human Condition: A Vision of the Future for Social-Behavioral Modeling; Challenges; Challenge One: The Complexity of Human Issues; Challenge Two: Fragmentation; Empirical Observation; Empirical Experiments; Generative Simulation; Unification; Challenge Three: Representations; Challenge Four: Applications of Social-Behavioral Modeling; About This Book; Roadmap for the Book; References…”
Full text (MFA users only)
Electronic eBook -
91
Applications of GRA and grey prediction models
Published 2014Table of Contents: “…Combined forecasting of regional logistics demand optimized by genetic algorithmApplication of grey relational analysis to expose individual student's cognitive difficulties in English public speaking; Mobile communication service income prediction method based on grey buffer operator theory; Using grey relational analysis to evaluate resource configuration and service ability for hospital on public private partnership model in China; The status of traditional medicine and national medicine in different areas of the China in 2011 with grey clustering analysis.…”
Full text (MFA users only)
Electronic eBook -
92
-
93
Robust Battery Management Systems.
Published 2023Table of Contents: “…-- 1.4.1 Modularized Approach -- 1.4.2 Illustration of Algorithms Through Matlab Simulation…”
Full text (MFA users only)
Electronic eBook -
94
Modeling semi-arid water-soil-vegetation systems
Published 2022Table of Contents: “…3.6 Topsoil erosion -- 3.6.1 Aeolian erosion -- 3.6.2 Fluvial erosion -- 3.6.3 Effects of physical and biological crusts on erosion -- 3.7 Summary and discussion -- References -- Chapter 4 Mathematical models -- 4.1 Overview -- 4.2 Comparisons of existing models -- 4.2.1 HYDRUS-1D -- 4.2.2 SWAT -- 4.2.3 SWAP -- 4.2.4 Comparisons -- 4.3 Model selection -- 4.4 Development of new algorithms -- 4.4.1 Physical crusts -- 4.4.2 Biocrusts -- 4.4.3 Low-moisture soils -- 4.4.4 Dry soil layers -- 4.4.5 The SWAP-E model -- 4.5 Measures of model performance -- 4.5.1 Empirical judgement…”
Full text (MFA users only)
Electronic eBook -
95
Reviews in computational chemistry.
Published 2001Table of Contents: “…Small Molecule Docking and Scoring; Introduction; Algorithms for Molecular Docking; The Docking Problem; Placing Fragments and Rigid Molecules; Flexible Ligand Docking; Handling Protein Flexibility; Docking of Combinatorial Libraries; Scoring; Shape and Chemical Complementary Scores; Force Field Scoring; Empirical Scoring Functions; Knowledge-Based Scoring Functions; Comparing Scoring Functions in Docking Experiments: Consensus Scoring.…”
Full text (MFA users only)
Electronic eBook -
96
Stochastic filtering with applications in finance
Published 2010Table of Contents: “…Background to particle filter for non Gaussian problems. 1.8. Particle filter algorithm. 1.9. Unobserved component models. 1.10. …”
Full text (MFA users only)
Electronic eBook -
97
Handbook of high-frequency trading and modeling in finance
Published 2016Table of Contents: “…4.1 Introduction4.2 Background; 4.2.1 Portfolios And Optimization; 4.2.2 Algorithmic Complexity; 4.2.3 Performance; 4.2.4 Ising Model; 4.2.5 Adiabatic Quantum Computing; 4.3 The models; 4.3.1 Financial Model; 4.3.2 Graph-Theoretic Combinatorial Optimization Models; 4.3.3 Ising And Qubo Models; 4.3.4 Mixed Models; 4.4 Methods; 4.4.1 Model Implementation; 4.4.2 Input Data; 4.4.3 Mean-Variance Calculations; 4.4.4 Implementing The Risk Measure; 4.4.5 Implementation Mapping; 4.5 Results; 4.5.1 The Simple Correlation Model; 4.5.2 The Restricted Minimum-Risk Model.…”
Full text (MFA users only)
Electronic eBook -
98
Pattern recognition : a quality of data perspective
Published 2018Full text (MFA users only)
Electronic eBook -
99
Harry Markowitz : selected works
Published 2008Table of Contents: “…Computation of mean-semivariance efficient sets by the critical line algorithm. Data mining corrections -- ch. 7. Harry Markowitz Company. …”
Full text (MFA users only)
Electronic eBook -
100
Current development of mechanical engineering and energy : selected, peer reviewed papers from the 2013 International Symposium on Vehicle, Mechanical, and Electrical Engineering (...
Published 2014Table of Contents: “…Simulation and Study on Ride Comfort of Articulated Dump Truck Based on Rigid-Flex CouplingThe Hall Automotive Wheel Speed Sensor and Simulation for its Signal Processing; Wind-Induced Vibration of the Rear-View Mirrors of Car at High Speed; Research on the Affection of Vehicle Lateral Stability Related to the Improved ABS; The Quantification Research of Engine Body Defect that Tested by Ultrasonic Phased Array; Analysis of Vehicle Interior Low-Frequency Noise Based on ATV; The Engine Oil Sump Radiated Noise Optimization Design; A Novel OFDM Radar Algorithm in Vehicular Environment…”
Full text (MFA users only)
Electronic Conference Proceeding eBook