Search Results - empirical (algorithmes OR algorithm)

Search alternatives:

  1. 61

    Machine Learning in Chemical Safety and Health : Fundamentals with Applications. by Wang, Qingsheng

    Published 2022
    Table of Contents: “…Chapter 3 Flammability Characteristics Prediction Using QSPR Modeling -- 3.1 Introduction -- 3.1.1 Flammability Characteristics -- 3.1.2 QSPR Application -- 3.1.2.1 Concept of QSPR -- 3.1.2.2 Trends and Characteristics of QSPR -- 3.2 Flowchart for Flammability Characteristics Prediction -- 3.2.1 Dataset Preparation -- 3.2.2 Structure Input and Molecular Simulation -- 3.2.3 Calculation of Molecular Descriptors -- 3.2.4 Preliminary Screening of Molecular Descriptors -- 3.2.5 Descriptor Selection and Modeling -- 3.2.6 Model Validation -- 3.2.6.1 Model Fitting Ability Evaluation -- 3.2.6.2 Model Stability Analysis -- 3.2.6.3 Model Predictivity Evaluation -- 3.2.7 Model Mechanism Explanation -- 3.2.8 Summary of QSPR Process -- 3.3 QSPR Review for Flammability Characteristics -- 3.3.1 Flammability Limits -- 3.3.1.1 LFLT and LFL -- 3.3.1.2 UFLT and UFL -- 3.3.2 Flash Point -- 3.3.3 Auto-ignition Temperature -- 3.3.4 Heat of Combustion -- 3.3.5 Minimum Ignition Energy -- 3.3.6 Gas-liquid Critical Temperature -- 3.3.7 Other Properties -- 3.4 Limitations -- 3.5 Conclusions and Future Prospects -- References -- Chapter 4 Consequence Prediction Using Quantitative Property-Consequence Relationship Models -- 4.1 Introduction -- 4.2 Conventional Consequence Prediction Methods -- 4.2.1 Empirical Method -- 4.2.2 Computational Fluid Dynamics (CFD) Method -- 4.2.3 Integral Method -- 4.3 Machine Learning and Deep Learning-Based Consequence Prediction Models -- 4.4 Quantitative Property-Consequence Relationship Models -- 4.4.1 Consequence Database -- 4.4.2 Property Descriptors -- 4.4.3 Machine Learning and Deep Learning Algorithms -- 4.5 Challenges and Future Directions -- References -- Chapter 5 Machine Learning in Process Safety and Asset Integrity Management -- 5.1 Opportunities and Threats -- 5.2 State-of-the-Art Reviews -- 5.2.1 Artificial Neural Networks (ANNs).…”
    Full text (MFA users only)
    Electronic eBook
  2. 62

    Data mining with decision trees : theory and applications by Rokach, Lior

    Published 2008
    Table of Contents: “…2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. …”
    Full text (MFA users only)
    Electronic eBook
  3. 63

    Applied Artificial Intelligence : Proceedings of the 7th International FLINS Conference. by Arena, Paolo, Fortuna, Luigi

    Published 2006
    Table of Contents: “…Environmental/economic dispatch using genetic algorithm and fuzzy number ranking method / G. Zhang [and others]. …”
    Full text (MFA users only)
    Electronic eBook
  4. 64

    Discourse, of course : an overview of research in discourse studies

    Published 2009
    Table of Contents: “…/ Elisabeth Le -- Implicit and explicit coherence relations / Maite Taboada -- Style and culture in quantitative discourse analysis / Martin Kaltenbacher -- Devices of probability and obligation in text types / Xinzhang Yang -- Analysis and evaluation of argumentative discourse / Frans H. van Eemeren and Bart Garssen -- Embodied cognition, discourse, and dual coding theory : new directions / Mark Sadoski -- The cognition of discourse coherence / Ted Sanders and Wilbert Spooren -- A computational psycholinguistic algorithm to measure cohesion in discourse / Max M. …”
    Full text (MFA users only)
    Electronic eBook
  5. 65
  6. 66

    Big data and differential privacy : analysis strategies for railway track engineering by Attoh-Okine, Nii O.

    Published 2017
    Table of Contents: “…3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query.…”
    Full text (MFA users only)
    Electronic eBook
  7. 67

    Intelligent computational systems : a multi-disciplinary perspective

    Published 2017
    Table of Contents: “…3.2.1. Genetic Algorithm (GA) -- 3.2.2. Particle Swarm Optimization Algorithm (PSO) -- 3.3. …”
    Full text (MFA users only)
    Electronic eBook
  8. 68

    Other geographies : the influences of Michael Watts

    Published 2017
    Full text (MFA users only)
    Electronic eBook
  9. 69

    EEG Signal Processing and Machine Learning. by Sanei, Saeid

    Published 2021
    Table of Contents: “…3.6 Dynamic Modelling of Neuron Action Potential Threshold -- 3.7 Summary -- References -- Chapter 4 Fundamentals of EEG Signal Processing -- 4.1 Introduction -- 4.2 Nonlinearity of the Medium -- 4.3 Nonstationarity -- 4.4 Signal Segmentation -- 4.5 Signal Transforms and Joint Time-Frequency Analysis -- 4.5.1 Wavelet Transform -- 4.5.1.1 Continuous Wavelet Transform -- 4.5.1.2 Examples of Continuous Wavelets -- 4.5.1.3 Discrete-Time Wavelet Transform -- 4.5.1.4 Multiresolution Analysis -- 4.5.1.5 Wavelet Transform Using Fourier Transform -- 4.5.1.6 Reconstruction -- 4.5.2 Synchro-Squeezed Wavelet Transform -- 4.5.3 Ambiguity Function and the Wigner-Ville Distribution -- 4.6 Empirical Mode Decomposition -- 4.7 Coherency, Multivariate Autoregressive Modelling, and Directed Transfer Function -- 4.8 Filtering and Denoising -- 4.9 Principal Component Analysis -- 4.9.1 Singular Value Decomposition -- 4.10 Summary -- References -- Chapter 5 EEG Signal Decomposition -- 5.1 Introduction -- 5.2 Singular Spectrum Analysis -- 5.2.1 Decomposition -- 5.2.2 Reconstruction -- 5.3 Multichannel EEG Decomposition -- 5.3.1 Independent Component Analysis -- 5.3.2 Instantaneous BSS -- 5.3.3 Convolutive BSS -- 5.3.3.1 General Applications -- 5.3.3.2 Application of Convolutive BSS to EEG -- 5.4 Sparse Component Analysis -- 5.4.1 Standard Algorithms for Sparse Source Recovery -- 5.4.1.1 Greedy-Based Solution -- 5.4.1.2 Relaxation-Based Solution -- 5.4.2 k-Sparse Mixtures -- 5.5 Nonlinear BSS -- 5.6 Constrained BSS -- 5.7 Application of Constrained BSS -- Example -- 5.8 Multiway EEG Decompositions -- 5.8.1 Tensor Factorization for BSS -- 5.8.2 Solving BSS of Nonstationary Sources Using Tensor Factorization -- 5.9 Tensor Factorization for Underdetermined Source Separation -- 5.10 Tensor Factorization for Separation of Convolutive Mixtures in the Time Domain.…”
    Full text (MFA users only)
    Electronic eBook
  10. 70
  11. 71

    Neural networks in chemical reaction dynamics

    Published 2012
    Full text (MFA users only)
    Electronic eBook
  12. 72
  13. 73

    Inverse problems of vibrational spectroscopy by Yagola, A. G.

    Published 1999
    Table of Contents: “…Ill-posed problems and the regularization method. Regularizing algorithms for constructing force fields of polyatomic molecules on the base of experimental data -- 6.1. …”
    Full text (MFA users only)
    Electronic eBook
  14. 74

    Stochastic filtering with applications in finance by Bhar, Ramaprasad

    Published 2010
    Table of Contents: “…Background to particle filter for non Gaussian problems. 1.8. Particle filter algorithm. 1.9. Unobserved component models. 1.10. …”
    Full text (MFA users only)
    Electronic eBook
  15. 75

    Computational materials discovery

    Published 2018
    Table of Contents: “…3.1.2 Empirical Interatomic Potentials3.1.3 Machine Learning Interatomic Potentials; 3.2 Simple Problem: Fitting of Potential Energy Surfaces; 3.2.1 Representation of Atomic Systems; 3.2.2 An Overview of Machine Learning Methods; 3.3 Machine Learning Interatomic Potentials; 3.3.1 Representation of Atomic Environments; 3.3.2 Existing MLIPs; 3.4 Fitting and Testing of Interatomic Potentials; 3.4.1 Optimization Algorithms; 3.4.2 Validation and Cross-validation; 3.4.3 Learning on the Fly; 3.5 Discussion; 3.5.1 Which Potential Is Better?…”
    Full text (MFA users only)
    Electronic eBook
  16. 76

    A Case for the Existence of God. by Overman, Dean L.

    Published 2008
    Table of Contents: “…Chapter 11: Recorded Experiences of Encounters with the Divine Bear Witness to a Way of Knowing that Includes Kierkegaard's KENDSKAB, BUBER'S I-Thou, OTTO'S Wholly Other, AND MARCEL'S MysteryChapter 12: THESE NINE WITNESSES TESTIFY TO ANOTHER WAY OF KNOWING THAT IS COMPATIBLE WITH THE EMPIRICAL AND THE METAPHYSICAL RATIONAL WAYS OF KNOWING, BUT IS BEYOND THE DESCRIBABLE AND REQUIRES PERSO; Chapter 13: CONCLUDING REFLECTIONS AND SUMMARY; AFTERWORD; Appendix A: THE NEW MATHEMATICS OF ALGORITHMIC INFORMATION THEORY IS RELEVANT TO THEORIES CONCERNING THE FORMATION OF THE FIRST LIVING MATTER.…”
    Full text (MFA users only)
    Electronic eBook
  17. 77
  18. 78

    Pattern recognition in industry by Bhagat, Phiroz

    Published 2005
    Table of Contents: “…Preface -- -- Acknowledgments -- About the Author -- <CENTER>Part I Philosophy</CENTER> -- -- CHAPTER 1: INTRODUCTION -- CHAPTER 2: PATTERNS WITHIN DATA -- CHAPTER 3: ADAPTING BIOLOGICAL PRINCIPLES FOR DEPLOYMENT IN COMPUTATIONAL SCIENCE -- CHAPTER 4: ISSUES IN PREDICTIVE EMPIRICAL MODELING -- <CENTER>Part II Technology</CENTER> -- CHAPTER 5: SUPERVISED LEARNINGCORRELATIVE NEURAL NETS -- CHAPTER 6: UNSUPERVISED LEARNING: AUTO-CLUSTERING AND SELF-ORGANIZING DATA -- CHAPTER 7: CUSTOMIZING FOR INDUSTRIAL STRENGTH APPLICATIONS -- CHAPTER 8: CHARACTERIZING AND CLASSIFYING TEXTUAL MATERIAL -- CHAPTER 9: PATTERN RECOGNITION IN TIME SERIES ANALYSIS -- CHAPTER 10: GENETIC ALGORITHMS -- <CENTER>Part III Case Studies</CENTER> -- CHAPTER 11: HARNESSING THE TECHNOLOGY FOR PROFITABILITY -- CHAPTER 12: REACTOR MODELING THROUGH IN SITU ADAPTIVE LEARNING -- CHAPTER 13: PREDICTING PLANT STACK EMISSIONS TO MEET ENVIRONMENTAL LIMITS -- CHAPTER 14: PREDICTING FOULING/COKING IN FIRED HEATERS -- CHAPTER 15: PREDICTING OPERATIONAL CREDITS -- CHAPTER 16: PILOT PLANT SCALE-UP BY INTERPRETING TRACER DIAGNOSTICS -- CHAPTER 17: PREDICTING DISTILLATION TOWER TEMPERATURES: MINING DATA FOR CAPTURING DISTINCT OPERATIONAL VARIABILITY -- CHAPTER 18: ENABLING NEW PROCESS DESIGN BASED ON LABORATORY DATA -- CHAPTER 19: FORECASTING PRICE CHANGES OF A COMPOSITE BASKET OF COMMODITIES -- CHAPTER 20: CORPORATE DEMOGRAPHIC TREND ANALYSIS -- EPILOGUE -- <CENTER>Appendices</CENTER> -- APPENDIX A1: THERMODYNAMICS AND INFORMATION THEORY -- APPENDIX A2: MODELING.…”
    Full text (MFA users only)
    Electronic eBook
  19. 79

    Mathematics of evolution and phylogeny

    Published 2005
    Table of Contents: “…List of Contributors -- 1 The minimum evolution distance-based approach of phylogenetic inference -- 1.1 Introduction -- 1.2 Tree metrics -- 1.2.1 Notation and basics -- 1.2.2 Three-point and four-point conditions -- 1.2.3 Linear decomposition into split metrics -- 1.2.4 Topological matrices -- 1.2.5 Unweighted and balanced averages -- 1.2.6 Alternate balanced basis for tree metrics -- 1.2.7 Tree metric inference in phylogenetics -- 1.3 Edge and tree length estimation -- 1.3.1 The LS approach -- 1.3.2 Edge length formulae -- 1.3.3 Tree length formulae -- 1.3.4 The positivity constraint -- 1.3.5 The balanced scheme of Pauplin -- 1.3.6 Semple and Steel combinatorial interpretation -- 1.3.7 BME: a WLS interpretation -- 1.4 The agglomerative approach -- 1.4.1 UPGMA and WPGMA -- 1.4.2 NJ as a balanced minimum evolution algorithm -- 1.4.3 Other agglomerative algorithms -- 1.5 Iterative topology searching and tree building -- 1.5.1 Topology transformations.; 1.5.2 A fast algorithm for NNIs with OLS -- 1.5.3 A fast algorithm for NNIs with BME -- 1.5.4 Iterative tree building with OLS -- 1.5.5 From OLS to BME -- 1.6 Statistical consistency -- 1.6.1 Positive results -- 1.6.2 Negative results -- 1.6.3 Atteson's safety radius analysis -- 1.7 Discussion -- Acknowledgements -- 2 Likelihood calculation in molecular phylogenetics -- 2.1 Introduction -- 2.2 Markov models of sequence evolution -- 2.2.1 Independence of sites -- 2.2.2 Setting up the basic model -- 2.2.3 Stationary distribution -- 2.2.4 Time reversibility -- 2.2.5 Rate of mutation -- 2.2.6 Probability of sequence evolution on a tree -- 2.3 Likelihood calculation: the basic algorithm -- 2.4 Likelihood calculation: improved models -- 2.4.1 Choosing the rate matrix -- 2.4.2 Among site rate variation -- 2.4.3 Site-specific rate variation -- 2.4.4 Correlated evolution between sites -- 2.5 Optimizing parameters -- 2.5.1 Optimizing continuous parameters -- 2.5.2 Searching for the optimal tree.; 2.5.3 Alternative search strategies -- 2.6 Consistency of the likelihood approach -- 2.6.1 Statistical consistency -- 2.6.2 Identifiability of the phylogenetic models -- 2.6.3 Coping with errors in the model -- 2.7 Likelihood ratio tests -- 2.7.1 When to use the asymptotic x2 distribution -- 2.7.2 Testing a subset of real parameters -- 2.7.3 Testing parameters with boundary conditions -- 2.7.4 Testing trees -- 2.8 Concluding remarks -- Acknowledgements -- 3 Bayesian inference in molecular phylogenetics -- 3.1 The likelihood function and maximum likelihood estimates -- 3.2 The Bayesian paradigm -- 3.3 Prior -- 3.4 Markov chain Monte Carlo -- 3.4.1 Metropolis-Hastings algorithm -- 3.4.2 Single-component Metropolis-Hastings algorithm -- 3.4.3 Gibbs sampler -- 3.4.4 Metropolis-coupled MCMC -- 3.5 Simple moves and their proposal ratios -- 3.5.1 Sliding window using uniform proposal -- 3.5.2 Sliding window using normally distributed proposal.; 3.5.3 Sliding window using normal proposal in multidimensions -- 3.5.4 Proportional shrinking and expanding -- 3.6 Monitoring Markov chains and processing output -- 3.6.1 Diagnosing and validating MCMC algorithms -- 3.6.2 Gelman and Rubin's potential scale reduction statistic -- 3.6.3 Processing output -- 3.7 Applications to molecular phylogenetics -- 3.7.1 Estimation of phylogenies -- 3.7.2 Estimation of species divergence times -- 3.8 Conclusions and perspectives -- Acknowledgements -- 4 Statistical approach to tests involving phylogenies -- 4.1 The statistical approach to phylogenetic inference -- 4.2 Hypotheses testing -- 4.2.1 Null and alternative hypotheses -- 4.2.2 Test statistics -- 4.2.3 Significance and power -- 4.2.4 Bayesian hypothesis testing -- 4.2.5 Questions posed as function of the tree parameter -- 4.2.6 Topology of treespace -- 4.2.7 The data -- 4.2.8 Statistical paradigms -- 4.2.9 Distributions on treespace -- 4.3 Different types of tests involving phylogenies.; 4.3.1 Testing t1 versus t2 -- 4.3.2 Conditional tests -- 4.3.3 Modern Bayesian hypothesis testing -- 4.3.4 Bootstrap tests -- 4.4 Non-parametric multivariate hypothesis testing -- 4.4.1 Multivariate con.dence regions -- 4.5 Conclusions: there are many open problems -- Acknowledgements -- 5 Mixture models in phylogenetic inference -- 5.1 Introduction: models of gene-sequence evolution -- 5.2 Mixture models -- 5.3 Defining mixture models -- 5.3.1 Partitioning and mixture models -- 5.3.2 Discrete-gamma model as a mixture model -- 5.3.3 Combining rate and pattern-heterogeneity -- 5.4 Digression: Bayesian phylogenetic inference -- 5.4.1 Bayesian inference of trees via MCMC -- 5.5 A mixture model combining rate and pattern-heterogeneity -- 5.5.1 Selected simulation results -- 5.6 Application of the mixture model to inferring the phylogeny of the mammals -- 5.6.1 Model testing -- 5.7 Results -- 5.7.1 How many rate matrices to include in the mixture model?…”
    Full text (MFA users only)
    Electronic eBook
  20. 80

    Social-behavioral modeling for complex systems

    Published 2019
    Table of Contents: “…Cover; Title Page; Copyright; Contents; Foreword; List of Contributors; About the Editors; About the Companion Website; Part I Introduction and Agenda; Chapter 1 Understanding and Improving the Human Condition: A Vision of the Future for Social-Behavioral Modeling; Challenges; Challenge One: The Complexity of Human Issues; Challenge Two: Fragmentation; Empirical Observation; Empirical Experiments; Generative Simulation; Unification; Challenge Three: Representations; Challenge Four: Applications of Social-Behavioral Modeling; About This Book; Roadmap for the Book; References…”
    Full text (MFA users only)
    Electronic eBook