Search Results - mathematical statistics data processing.

Search alternatives:

  1. 201

    Process control : a practical approach by King, Myke, 1951-

    Published 2016
    Full text (MFA users only)
    Electronic eBook
  2. 202

    Introduction to imprecise probabilities

    Published 2014
    Full text (MFA users only)
    Electronic eBook
  3. 203
  4. 204

    MATLAB® for Neuroscientists : an introduction to scientific computing in MATLAB® by Wallisch, Pascal, 1978-

    Published 2014
    Table of Contents: “…MATLAB tutorial -- Mathematics and statistics tutorial -- Programming tutorial : principles and best practices -- Visualization and documentation tutorial -- Collecting reaction times I : visual search and pop out -- Collecting reaction times II : attention -- Psychophysics -- Psychophysics with GUIs -- Signal detection theory -- Frequency analysis part I : Fourier decomposition -- Frequency analysis part II : nonstationary signals and spectograms -- Wavelets -- Introduction to phase plane analysis -- Exploring the Figzhugh-Nagumo model -- Convolution -- Neural data analysis I : encoding -- Neural data analysis II : binned spike data -- Principal components analysis -- Information theory -- Neural decoding part I : discrete variables -- Neural decoding part II : continuous variables -- Local field potentials -- Functional magnetic imaging -- Voltage-gated ion channels -- Synaptic transmission -- Modeling a single neuron -- Models of the retina -- SImplified model of spiking neurons -- Fitzhugh-Nagumo model : traveling waves -- Decision theory lab -- Markov models -- Modeling spike trains as a Poisson process -- Exploring the Wilson-Cowan equations -- Neural networks as forest fires : stochastic neurodynamics -- Neural networks lab I : unsupervised learing -- Neural network lab II : supervised learning.…”
    Full text (MFA users only)
    Electronic eBook
  5. 205

    Mathematics of evolution and phylogeny

    Published 2005
    Table of Contents: “….; 6.7 Other applications and perspectives -- 7 Phylogenetic networks -- 7.1 Introduction -- 7.2 Median networks -- 7.3 Visual complexity of median networks -- 7.4 Consensus networks -- 7.5 Treelikeness -- 7.6 Deriving phylogenetic networks from distances -- 7.7 Neighbour-net -- 7.8 Discussion -- Acknowledgements -- 8 Reconstructing the duplication history of tandemly repeated sequences -- 8.1 Introduction -- 8.2 Repeated sequences and duplication model -- 8.2.1 Di.erent categories of repeated sequences -- 8.2.2 Biological model and assumptions -- 8.2.3 Duplication events, duplication histories, and duplication trees -- 8.2.4 The human T-cell receptor Gamma genes -- 8.2.5 Other data sets, applicability of the model -- 8.3 Mathematical model and properties -- 8.3.1 Notation -- 8.3.2 Root position -- 8.3.3 Recursive de.nition of rooted and unrooted duplication trees -- 8.3.4 From phylogenies with ordered leaves to duplication trees.; 8.3.5 Topñdown approach and leftñright properties of rooted duplication trees -- 8.3.6 Counting duplication histories -- 8.3.7 Counting simple event duplication trees -- 8.3.8 Counting (unrestricted) duplication trees -- 8.4 Inferring duplication trees from sequence data -- 8.4.1 Preamble -- 8.4.2 Computational hardness of duplication tree inference -- 8.4.3 Distance-based inference of simple event duplication trees -- 8.4.4 A simple parsimony heuristic to infer unrestricted duplication trees -- 8.4.5 Simple distance-based heuristic to infer unrestricted duplication trees -- 8.5 Simulation comparison and prospects -- Acknowledgements -- 9 Conserved segment statistics and rearrangement inferences in comparative genomics -- 9.1 Introduction -- 9.2 Genetic (recombinational) distance -- 9.3 Gene counts -- 9.4 The inference problem -- 9.5 What can we infer from conserved segments? …”
    Full text (MFA users only)
    Electronic eBook
  6. 206

    Global Health Risks : Mortality and Burden of Disease Attributable to Selected Major Risks. by Organization, World Health

    Published 2009
    Subjects: “…Medicine Data processing.…”
    Full text (MFA users only)
    Electronic eBook
  7. 207

    Mathematics and life sciences

    Published 2013
    Table of Contents: “…1 Introduction; 1.1 Scientific Frontiers at the Interface of Mathematics and Life Sciences; 1.1.1 Developing the Language of Science and Its Interdisciplinary Character; 1.1.2 Challenges at the Interface: Mathematics and Life Sciences; 1.1.3 What This Book Is About; 1.1.4 Concluding Remarks; 2 Mathematical and Statistical Modeling of Biological Systems; 2.1 Ensemble Modeling of Biological Systems; 2.1.1 Introduction; 2.1.2 Background; 2.1.3 Ensemble Model; 2.1.4 Computational Techniques; 2.1.5 Application to Viral Infection Dynamics; 2.1.6 Ensemble Models in Biology; 2.1.7 Conclusions.…”
    Full text (MFA users only)
    Electronic eBook
  8. 208

    Mathematical GeoEnergy : Oil Discovery, Depletion and Renewable Energy Analysis. by Pukite, Paul

    Published 2018
    Table of Contents: “…DISPERSIVE AGGREGATION MODEL OF RESERVOIR SIZES; 4.3. COMPARISON WITH REAL DATA…”
    Full text (MFA users only)
    Electronic eBook
  9. 209
  10. 210
  11. 211
  12. 212
  13. 213
  14. 214

    The Bioinformatics : Machine Learning Approach. by Brunak, Søren

    Published 2001
    Full text (MFA users only)
    Electronic eBook
  15. 215
  16. 216
  17. 217

    EEG Signal Processing and Machine Learning. by Sanei, Saeid

    Published 2021
    Table of Contents: “…5.11 Separation of Correlated Sources via Tensor Factorization -- 5.12 Common Component Analysis -- 5.13 Canonical Correlation Analysis -- 5.14 Summary -- References -- Chapter 6 Chaos and Dynamical Analysis -- 6.1 Introduction to Chaos and Dynamical Systems -- 6.2 Entropy -- 6.3 Kolmogorov Entropy -- 6.4 Multiscale Fluctuation-Based Dispersion Entropy -- 6.5 Lyapunov Exponents -- 6.6 Plotting the Attractor Dimensions from Time Series -- 6.7 Estimation of Lyapunov Exponents from Time Series -- 6.7.1 Optimum Time Delay -- 6.7.2 Optimum Embedding Dimension -- 6.8 Approximate Entropy -- 6.9 Using Prediction Order -- 6.10 Summary -- References -- Chapter 7 Machine Learning for EEG Analysis -- 7.1 Introduction -- 7.2 Clustering Approaches -- 7.2.1 k-Means Clustering Algorithm -- 7.2.2 Iterative Self-Organizing Data Analysis Technique -- 7.2.3 Gap Statistics -- 7.2.4 Density-Based Clustering -- 7.2.5 Affinity-Based Clustering -- 7.2.6 Deep Clustering -- 7.2.7 Semi-Supervised Clustering -- 7.2.7.1 Basic Semi-Supervised Techniques -- 7.2.7.2 Deep Semi-Supervised Techniques -- 7.2.8 Fuzzy Clustering -- 7.3 Classification Algorithms -- 7.3.1 Decision Trees -- 7.3.2 Random Forest -- 7.3.3 Linear Discriminant Analysis -- 7.3.4 Support Vector Machines -- 7.3.5 k-Nearest Neighbour -- 7.3.6 Gaussian Mixture Model -- 7.3.7 Logistic Regression -- 7.3.8 Reinforcement Learning -- 7.3.9 Artificial Neural Networks -- 7.3.9.1 Deep Neural Networks -- 7.3.9.2 Convolutional Neural Networks -- 7.3.9.3 Autoencoders -- 7.3.9.4 Variational Autoencoder -- 7.3.9.5 Recent DNN Approaches -- 7.3.9.6 Spike Neural Networks -- 7.3.9.7 Applications of DNNs to EEG -- 7.3.10 Gaussian Processes -- 7.3.11 Neural Processes -- 7.3.12 Graph Convolutional Networks -- 7.3.13 Naïve Bayes Classifier -- 7.3.14 Hidden Markov Model -- 7.3.14.1 Forward Algorithm -- 7.3.14.2 Backward Algorithm.…”
    Full text (MFA users only)
    Electronic eBook
  18. 218

    Digital Signal Processing : a Practical Guide for Engineers and Scientists. by Smith, Steven W.

    Published 2013
    Table of Contents: “…The Breadth and Depth of DSP; The Roots of DSP; Telecommunications; Audio Processing; Echo Location; Image Processing; Chapter 2. …”
    Full text (MFA users only)
    Electronic eBook
  19. 219
  20. 220